Initial commit from Specify template

This commit is contained in:
pukpuk
2025-10-08 17:22:09 +08:00
commit 91746fe33c
27 changed files with 3658 additions and 0 deletions

View File

@@ -0,0 +1,183 @@
---
description: Perform a non-destructive cross-artifact consistency and quality analysis across spec.md, plan.md, and tasks.md after task generation.
---
## User Input
```text
$ARGUMENTS
```
You **MUST** consider the user input before proceeding (if not empty).
## Goal
Identify inconsistencies, duplications, ambiguities, and underspecified items across the three core artifacts (`spec.md`, `plan.md`, `tasks.md`) before implementation. This command MUST run only after `/tasks` has successfully produced a complete `tasks.md`.
## Operating Constraints
**STRICTLY READ-ONLY**: Do **not** modify any files. Output a structured analysis report. Offer an optional remediation plan (user must explicitly approve before any follow-up editing commands would be invoked manually).
**Constitution Authority**: The project constitution (`.specify/memory/constitution.md`) is **non-negotiable** within this analysis scope. Constitution conflicts are automatically CRITICAL and require adjustment of the spec, plan, or tasks—not dilution, reinterpretation, or silent ignoring of the principle. If a principle itself needs to change, that must occur in a separate, explicit constitution update outside `/analyze`.
## Execution Steps
### 1. Initialize Analysis Context
Run `.specify/scripts/bash/check-prerequisites.sh --json --require-tasks --include-tasks` once from repo root and parse JSON for FEATURE_DIR and AVAILABLE_DOCS. Derive absolute paths:
- SPEC = FEATURE_DIR/spec.md
- PLAN = FEATURE_DIR/plan.md
- TASKS = FEATURE_DIR/tasks.md
Abort with an error message if any required file is missing (instruct the user to run missing prerequisite command).
### 2. Load Artifacts (Progressive Disclosure)
Load only the minimal necessary context from each artifact:
**From spec.md:**
- Overview/Context
- Functional Requirements
- Non-Functional Requirements
- User Stories
- Edge Cases (if present)
**From plan.md:**
- Architecture/stack choices
- Data Model references
- Phases
- Technical constraints
**From tasks.md:**
- Task IDs
- Descriptions
- Phase grouping
- Parallel markers [P]
- Referenced file paths
**From constitution:**
- Load `.specify/memory/constitution.md` for principle validation
### 3. Build Semantic Models
Create internal representations (do not include raw artifacts in output):
- **Requirements inventory**: Each functional + non-functional requirement with a stable key (derive slug based on imperative phrase; e.g., "User can upload file" → `user-can-upload-file`)
- **User story/action inventory**: Discrete user actions with acceptance criteria
- **Task coverage mapping**: Map each task to one or more requirements or stories (inference by keyword / explicit reference patterns like IDs or key phrases)
- **Constitution rule set**: Extract principle names and MUST/SHOULD normative statements
### 4. Detection Passes (Token-Efficient Analysis)
Focus on high-signal findings. Limit to 50 findings total; aggregate remainder in overflow summary.
#### A. Duplication Detection
- Identify near-duplicate requirements
- Mark lower-quality phrasing for consolidation
#### B. Ambiguity Detection
- Flag vague adjectives (fast, scalable, secure, intuitive, robust) lacking measurable criteria
- Flag unresolved placeholders (TODO, TKTK, ???, `<placeholder>`, etc.)
#### C. Underspecification
- Requirements with verbs but missing object or measurable outcome
- User stories missing acceptance criteria alignment
- Tasks referencing files or components not defined in spec/plan
#### D. Constitution Alignment
- Any requirement or plan element conflicting with a MUST principle
- Missing mandated sections or quality gates from constitution
#### E. Coverage Gaps
- Requirements with zero associated tasks
- Tasks with no mapped requirement/story
- Non-functional requirements not reflected in tasks (e.g., performance, security)
#### F. Inconsistency
- Terminology drift (same concept named differently across files)
- Data entities referenced in plan but absent in spec (or vice versa)
- Task ordering contradictions (e.g., integration tasks before foundational setup tasks without dependency note)
- Conflicting requirements (e.g., one requires Next.js while other specifies Vue)
### 5. Severity Assignment
Use this heuristic to prioritize findings:
- **CRITICAL**: Violates constitution MUST, missing core spec artifact, or requirement with zero coverage that blocks baseline functionality
- **HIGH**: Duplicate or conflicting requirement, ambiguous security/performance attribute, untestable acceptance criterion
- **MEDIUM**: Terminology drift, missing non-functional task coverage, underspecified edge case
- **LOW**: Style/wording improvements, minor redundancy not affecting execution order
### 6. Produce Compact Analysis Report
Output a Markdown report (no file writes) with the following structure:
## Specification Analysis Report
| ID | Category | Severity | Location(s) | Summary | Recommendation |
|----|----------|----------|-------------|---------|----------------|
| A1 | Duplication | HIGH | spec.md:L120-134 | Two similar requirements ... | Merge phrasing; keep clearer version |
(Add one row per finding; generate stable IDs prefixed by category initial.)
**Coverage Summary Table:**
| Requirement Key | Has Task? | Task IDs | Notes |
|-----------------|-----------|----------|-------|
**Constitution Alignment Issues:** (if any)
**Unmapped Tasks:** (if any)
**Metrics:**
- Total Requirements
- Total Tasks
- Coverage % (requirements with >=1 task)
- Ambiguity Count
- Duplication Count
- Critical Issues Count
### 7. Provide Next Actions
At end of report, output a concise Next Actions block:
- If CRITICAL issues exist: Recommend resolving before `/implement`
- If only LOW/MEDIUM: User may proceed, but provide improvement suggestions
- Provide explicit command suggestions: e.g., "Run /specify with refinement", "Run /plan to adjust architecture", "Manually edit tasks.md to add coverage for 'performance-metrics'"
### 8. Offer Remediation
Ask the user: "Would you like me to suggest concrete remediation edits for the top N issues?" (Do NOT apply them automatically.)
## Operating Principles
### Context Efficiency
- **Minimal high-signal tokens**: Focus on actionable findings, not exhaustive documentation
- **Progressive disclosure**: Load artifacts incrementally; don't dump all content into analysis
- **Token-efficient output**: Limit findings table to 50 rows; summarize overflow
- **Deterministic results**: Rerunning without changes should produce consistent IDs and counts
### Analysis Guidelines
- **NEVER modify files** (this is read-only analysis)
- **NEVER hallucinate missing sections** (if absent, report them accurately)
- **Prioritize constitution violations** (these are always CRITICAL)
- **Use examples over exhaustive rules** (cite specific instances, not generic patterns)
- **Report zero issues gracefully** (emit success report with coverage statistics)
## Context
$ARGUMENTS

View File

@@ -0,0 +1,286 @@
---
description: Generate a custom checklist for the current feature based on user requirements.
---
## Checklist Purpose: "Unit Tests for English"
**CRITICAL CONCEPT**: Checklists are **UNIT TESTS FOR REQUIREMENTS WRITING** - they validate the quality, clarity, and completeness of requirements in a given domain.
**NOT for verification/testing**:
- ❌ NOT "Verify the button clicks correctly"
- ❌ NOT "Test error handling works"
- ❌ NOT "Confirm the API returns 200"
- ❌ NOT checking if code/implementation matches the spec
**FOR requirements quality validation**:
- ✅ "Are visual hierarchy requirements defined for all card types?" (completeness)
- ✅ "Is 'prominent display' quantified with specific sizing/positioning?" (clarity)
- ✅ "Are hover state requirements consistent across all interactive elements?" (consistency)
- ✅ "Are accessibility requirements defined for keyboard navigation?" (coverage)
- ✅ "Does the spec define what happens when logo image fails to load?" (edge cases)
**Metaphor**: If your spec is code written in English, the checklist is its unit test suite. You're testing whether the requirements are well-written, complete, unambiguous, and ready for implementation - NOT whether the implementation works.
## User Input
```text
$ARGUMENTS
```
You **MUST** consider the user input before proceeding (if not empty).
## Execution Steps
1. **Setup**: Run `.specify/scripts/bash/check-prerequisites.sh --json` from repo root and parse JSON for FEATURE_DIR and AVAILABLE_DOCS list.
- All file paths must be absolute.
2. **Clarify intent (dynamic)**: Derive up to THREE initial contextual clarifying questions (no pre-baked catalog). They MUST:
- Be generated from the user's phrasing + extracted signals from spec/plan/tasks
- Only ask about information that materially changes checklist content
- Be skipped individually if already unambiguous in `$ARGUMENTS`
- Prefer precision over breadth
Generation algorithm:
1. Extract signals: feature domain keywords (e.g., auth, latency, UX, API), risk indicators ("critical", "must", "compliance"), stakeholder hints ("QA", "review", "security team"), and explicit deliverables ("a11y", "rollback", "contracts").
2. Cluster signals into candidate focus areas (max 4) ranked by relevance.
3. Identify probable audience & timing (author, reviewer, QA, release) if not explicit.
4. Detect missing dimensions: scope breadth, depth/rigor, risk emphasis, exclusion boundaries, measurable acceptance criteria.
5. Formulate questions chosen from these archetypes:
- Scope refinement (e.g., "Should this include integration touchpoints with X and Y or stay limited to local module correctness?")
- Risk prioritization (e.g., "Which of these potential risk areas should receive mandatory gating checks?")
- Depth calibration (e.g., "Is this a lightweight pre-commit sanity list or a formal release gate?")
- Audience framing (e.g., "Will this be used by the author only or peers during PR review?")
- Boundary exclusion (e.g., "Should we explicitly exclude performance tuning items this round?")
- Scenario class gap (e.g., "No recovery flows detected—are rollback / partial failure paths in scope?")
Question formatting rules:
- If presenting options, generate a compact table with columns: Option | Candidate | Why It Matters
- Limit to AE options maximum; omit table if a free-form answer is clearer
- Never ask the user to restate what they already said
- Avoid speculative categories (no hallucination). If uncertain, ask explicitly: "Confirm whether X belongs in scope."
Defaults when interaction impossible:
- Depth: Standard
- Audience: Reviewer (PR) if code-related; Author otherwise
- Focus: Top 2 relevance clusters
Output the questions (label Q1/Q2/Q3). After answers: if ≥2 scenario classes (Alternate / Exception / Recovery / Non-Functional domain) remain unclear, you MAY ask up to TWO more targeted followups (Q4/Q5) with a one-line justification each (e.g., "Unresolved recovery path risk"). Do not exceed five total questions. Skip escalation if user explicitly declines more.
3. **Understand user request**: Combine `$ARGUMENTS` + clarifying answers:
- Derive checklist theme (e.g., security, review, deploy, ux)
- Consolidate explicit must-have items mentioned by user
- Map focus selections to category scaffolding
- Infer any missing context from spec/plan/tasks (do NOT hallucinate)
4. **Load feature context**: Read from FEATURE_DIR:
- spec.md: Feature requirements and scope
- plan.md (if exists): Technical details, dependencies
- tasks.md (if exists): Implementation tasks
**Context Loading Strategy**:
- Load only necessary portions relevant to active focus areas (avoid full-file dumping)
- Prefer summarizing long sections into concise scenario/requirement bullets
- Use progressive disclosure: add follow-on retrieval only if gaps detected
- If source docs are large, generate interim summary items instead of embedding raw text
5. **Generate checklist** - Create "Unit Tests for Requirements":
- Create `FEATURE_DIR/checklists/` directory if it doesn't exist
- Generate unique checklist filename:
- Use short, descriptive name based on domain (e.g., `ux.md`, `api.md`, `security.md`)
- Format: `[domain].md`
- If file exists, append to existing file
- Number items sequentially starting from CHK001
- Each `/speckit.checklist` run creates a NEW file (never overwrites existing checklists)
**CORE PRINCIPLE - Test the Requirements, Not the Implementation**:
Every checklist item MUST evaluate the REQUIREMENTS THEMSELVES for:
- **Completeness**: Are all necessary requirements present?
- **Clarity**: Are requirements unambiguous and specific?
- **Consistency**: Do requirements align with each other?
- **Measurability**: Can requirements be objectively verified?
- **Coverage**: Are all scenarios/edge cases addressed?
**Category Structure** - Group items by requirement quality dimensions:
- **Requirement Completeness** (Are all necessary requirements documented?)
- **Requirement Clarity** (Are requirements specific and unambiguous?)
- **Requirement Consistency** (Do requirements align without conflicts?)
- **Acceptance Criteria Quality** (Are success criteria measurable?)
- **Scenario Coverage** (Are all flows/cases addressed?)
- **Edge Case Coverage** (Are boundary conditions defined?)
- **Non-Functional Requirements** (Performance, Security, Accessibility, etc. - are they specified?)
- **Dependencies & Assumptions** (Are they documented and validated?)
- **Ambiguities & Conflicts** (What needs clarification?)
**HOW TO WRITE CHECKLIST ITEMS - "Unit Tests for English"**:
**WRONG** (Testing implementation):
- "Verify landing page displays 3 episode cards"
- "Test hover states work on desktop"
- "Confirm logo click navigates home"
**CORRECT** (Testing requirements quality):
- "Are the exact number and layout of featured episodes specified?" [Completeness]
- "Is 'prominent display' quantified with specific sizing/positioning?" [Clarity]
- "Are hover state requirements consistent across all interactive elements?" [Consistency]
- "Are keyboard navigation requirements defined for all interactive UI?" [Coverage]
- "Is the fallback behavior specified when logo image fails to load?" [Edge Cases]
- "Are loading states defined for asynchronous episode data?" [Completeness]
- "Does the spec define visual hierarchy for competing UI elements?" [Clarity]
**ITEM STRUCTURE**:
Each item should follow this pattern:
- Question format asking about requirement quality
- Focus on what's WRITTEN (or not written) in the spec/plan
- Include quality dimension in brackets [Completeness/Clarity/Consistency/etc.]
- Reference spec section `[Spec §X.Y]` when checking existing requirements
- Use `[Gap]` marker when checking for missing requirements
**EXAMPLES BY QUALITY DIMENSION**:
Completeness:
- "Are error handling requirements defined for all API failure modes? [Gap]"
- "Are accessibility requirements specified for all interactive elements? [Completeness]"
- "Are mobile breakpoint requirements defined for responsive layouts? [Gap]"
Clarity:
- "Is 'fast loading' quantified with specific timing thresholds? [Clarity, Spec §NFR-2]"
- "Are 'related episodes' selection criteria explicitly defined? [Clarity, Spec §FR-5]"
- "Is 'prominent' defined with measurable visual properties? [Ambiguity, Spec §FR-4]"
Consistency:
- "Do navigation requirements align across all pages? [Consistency, Spec §FR-10]"
- "Are card component requirements consistent between landing and detail pages? [Consistency]"
Coverage:
- "Are requirements defined for zero-state scenarios (no episodes)? [Coverage, Edge Case]"
- "Are concurrent user interaction scenarios addressed? [Coverage, Gap]"
- "Are requirements specified for partial data loading failures? [Coverage, Exception Flow]"
Measurability:
- "Are visual hierarchy requirements measurable/testable? [Acceptance Criteria, Spec §FR-1]"
- "Can 'balanced visual weight' be objectively verified? [Measurability, Spec §FR-2]"
**Scenario Classification & Coverage** (Requirements Quality Focus):
- Check if requirements exist for: Primary, Alternate, Exception/Error, Recovery, Non-Functional scenarios
- For each scenario class, ask: "Are [scenario type] requirements complete, clear, and consistent?"
- If scenario class missing: "Are [scenario type] requirements intentionally excluded or missing? [Gap]"
- Include resilience/rollback when state mutation occurs: "Are rollback requirements defined for migration failures? [Gap]"
**Traceability Requirements**:
- MINIMUM: ≥80% of items MUST include at least one traceability reference
- Each item should reference: spec section `[Spec §X.Y]`, or use markers: `[Gap]`, `[Ambiguity]`, `[Conflict]`, `[Assumption]`
- If no ID system exists: "Is a requirement & acceptance criteria ID scheme established? [Traceability]"
**Surface & Resolve Issues** (Requirements Quality Problems):
Ask questions about the requirements themselves:
- Ambiguities: "Is the term 'fast' quantified with specific metrics? [Ambiguity, Spec §NFR-1]"
- Conflicts: "Do navigation requirements conflict between §FR-10 and §FR-10a? [Conflict]"
- Assumptions: "Is the assumption of 'always available podcast API' validated? [Assumption]"
- Dependencies: "Are external podcast API requirements documented? [Dependency, Gap]"
- Missing definitions: "Is 'visual hierarchy' defined with measurable criteria? [Gap]"
**Content Consolidation**:
- Soft cap: If raw candidate items > 40, prioritize by risk/impact
- Merge near-duplicates checking the same requirement aspect
- If >5 low-impact edge cases, create one item: "Are edge cases X, Y, Z addressed in requirements? [Coverage]"
**🚫 ABSOLUTELY PROHIBITED** - These make it an implementation test, not a requirements test:
- ❌ Any item starting with "Verify", "Test", "Confirm", "Check" + implementation behavior
- ❌ References to code execution, user actions, system behavior
- ❌ "Displays correctly", "works properly", "functions as expected"
- ❌ "Click", "navigate", "render", "load", "execute"
- ❌ Test cases, test plans, QA procedures
- ❌ Implementation details (frameworks, APIs, algorithms)
**✅ REQUIRED PATTERNS** - These test requirements quality:
- ✅ "Are [requirement type] defined/specified/documented for [scenario]?"
- ✅ "Is [vague term] quantified/clarified with specific criteria?"
- ✅ "Are requirements consistent between [section A] and [section B]?"
- ✅ "Can [requirement] be objectively measured/verified?"
- ✅ "Are [edge cases/scenarios] addressed in requirements?"
- ✅ "Does the spec define [missing aspect]?"
6. **Structure Reference**: Generate the checklist following the canonical template in `.specify/templates/checklist-template.md` for title, meta section, category headings, and ID formatting. If template is unavailable, use: H1 title, purpose/created meta lines, `##` category sections containing `- [ ] CHK### <requirement item>` lines with globally incrementing IDs starting at CHK001.
7. **Report**: Output full path to created checklist, item count, and remind user that each run creates a new file. Summarize:
- Focus areas selected
- Depth level
- Actor/timing
- Any explicit user-specified must-have items incorporated
**Important**: Each `/speckit.checklist` command invocation creates a checklist file using short, descriptive names unless file already exists. This allows:
- Multiple checklists of different types (e.g., `ux.md`, `test.md`, `security.md`)
- Simple, memorable filenames that indicate checklist purpose
- Easy identification and navigation in the `checklists/` folder
To avoid clutter, use descriptive types and clean up obsolete checklists when done.
## Example Checklist Types & Sample Items
**UX Requirements Quality:** `ux.md`
Sample items (testing the requirements, NOT the implementation):
- "Are visual hierarchy requirements defined with measurable criteria? [Clarity, Spec §FR-1]"
- "Is the number and positioning of UI elements explicitly specified? [Completeness, Spec §FR-1]"
- "Are interaction state requirements (hover, focus, active) consistently defined? [Consistency]"
- "Are accessibility requirements specified for all interactive elements? [Coverage, Gap]"
- "Is fallback behavior defined when images fail to load? [Edge Case, Gap]"
- "Can 'prominent display' be objectively measured? [Measurability, Spec §FR-4]"
**API Requirements Quality:** `api.md`
Sample items:
- "Are error response formats specified for all failure scenarios? [Completeness]"
- "Are rate limiting requirements quantified with specific thresholds? [Clarity]"
- "Are authentication requirements consistent across all endpoints? [Consistency]"
- "Are retry/timeout requirements defined for external dependencies? [Coverage, Gap]"
- "Is versioning strategy documented in requirements? [Gap]"
**Performance Requirements Quality:** `performance.md`
Sample items:
- "Are performance requirements quantified with specific metrics? [Clarity]"
- "Are performance targets defined for all critical user journeys? [Coverage]"
- "Are performance requirements under different load conditions specified? [Completeness]"
- "Can performance requirements be objectively measured? [Measurability]"
- "Are degradation requirements defined for high-load scenarios? [Edge Case, Gap]"
**Security Requirements Quality:** `security.md`
Sample items:
- "Are authentication requirements specified for all protected resources? [Coverage]"
- "Are data protection requirements defined for sensitive information? [Completeness]"
- "Is the threat model documented and requirements aligned to it? [Traceability]"
- "Are security requirements consistent with compliance obligations? [Consistency]"
- "Are security failure/breach response requirements defined? [Gap, Exception Flow]"
## Anti-Examples: What NOT To Do
**❌ WRONG - These test implementation, not requirements:**
```markdown
- [ ] CHK001 - Verify landing page displays 3 episode cards [Spec §FR-001]
- [ ] CHK002 - Test hover states work correctly on desktop [Spec §FR-003]
- [ ] CHK003 - Confirm logo click navigates to home page [Spec §FR-010]
- [ ] CHK004 - Check that related episodes section shows 3-5 items [Spec §FR-005]
```
**✅ CORRECT - These test requirements quality:**
```markdown
- [ ] CHK001 - Are the number and layout of featured episodes explicitly specified? [Completeness, Spec §FR-001]
- [ ] CHK002 - Are hover state requirements consistently defined for all interactive elements? [Consistency, Spec §FR-003]
- [ ] CHK003 - Are navigation requirements clear for all clickable brand elements? [Clarity, Spec §FR-010]
- [ ] CHK004 - Is the selection criteria for related episodes documented? [Gap, Spec §FR-005]
- [ ] CHK005 - Are loading state requirements defined for asynchronous episode data? [Gap]
- [ ] CHK006 - Can "visual hierarchy" requirements be objectively measured? [Measurability, Spec §FR-001]
```
**Key Differences:**
- Wrong: Tests if the system works correctly
- Correct: Tests if the requirements are written correctly
- Wrong: Verification of behavior
- Correct: Validation of requirement quality
- Wrong: "Does it do X?"
- Correct: "Is X clearly specified?"

View File

@@ -0,0 +1,162 @@
---
description: Identify underspecified areas in the current feature spec by asking up to 5 highly targeted clarification questions and encoding answers back into the spec.
---
## User Input
```text
$ARGUMENTS
```
You **MUST** consider the user input before proceeding (if not empty).
## Outline
Goal: Detect and reduce ambiguity or missing decision points in the active feature specification and record the clarifications directly in the spec file.
Note: This clarification workflow is expected to run (and be completed) BEFORE invoking `/speckit.plan`. If the user explicitly states they are skipping clarification (e.g., exploratory spike), you may proceed, but must warn that downstream rework risk increases.
Execution steps:
1. Run `.specify/scripts/bash/check-prerequisites.sh --json --paths-only` from repo root **once** (combined `--json --paths-only` mode / `-Json -PathsOnly`). Parse minimal JSON payload fields:
- `FEATURE_DIR`
- `FEATURE_SPEC`
- (Optionally capture `IMPL_PLAN`, `TASKS` for future chained flows.)
- If JSON parsing fails, abort and instruct user to re-run `/speckit.specify` or verify feature branch environment.
2. Load the current spec file. Perform a structured ambiguity & coverage scan using this taxonomy. For each category, mark status: Clear / Partial / Missing. Produce an internal coverage map used for prioritization (do not output raw map unless no questions will be asked).
Functional Scope & Behavior:
- Core user goals & success criteria
- Explicit out-of-scope declarations
- User roles / personas differentiation
Domain & Data Model:
- Entities, attributes, relationships
- Identity & uniqueness rules
- Lifecycle/state transitions
- Data volume / scale assumptions
Interaction & UX Flow:
- Critical user journeys / sequences
- Error/empty/loading states
- Accessibility or localization notes
Non-Functional Quality Attributes:
- Performance (latency, throughput targets)
- Scalability (horizontal/vertical, limits)
- Reliability & availability (uptime, recovery expectations)
- Observability (logging, metrics, tracing signals)
- Security & privacy (authN/Z, data protection, threat assumptions)
- Compliance / regulatory constraints (if any)
Integration & External Dependencies:
- External services/APIs and failure modes
- Data import/export formats
- Protocol/versioning assumptions
Edge Cases & Failure Handling:
- Negative scenarios
- Rate limiting / throttling
- Conflict resolution (e.g., concurrent edits)
Constraints & Tradeoffs:
- Technical constraints (language, storage, hosting)
- Explicit tradeoffs or rejected alternatives
Terminology & Consistency:
- Canonical glossary terms
- Avoided synonyms / deprecated terms
Completion Signals:
- Acceptance criteria testability
- Measurable Definition of Done style indicators
Misc / Placeholders:
- TODO markers / unresolved decisions
- Ambiguous adjectives ("robust", "intuitive") lacking quantification
For each category with Partial or Missing status, add a candidate question opportunity unless:
- Clarification would not materially change implementation or validation strategy
- Information is better deferred to planning phase (note internally)
3. Generate (internally) a prioritized queue of candidate clarification questions (maximum 5). Do NOT output them all at once. Apply these constraints:
- Maximum of 10 total questions across the whole session.
- Each question must be answerable with EITHER:
* A short multiplechoice selection (25 distinct, mutually exclusive options), OR
* A one-word / shortphrase answer (explicitly constrain: "Answer in <=5 words").
- Only include questions whose answers materially impact architecture, data modeling, task decomposition, test design, UX behavior, operational readiness, or compliance validation.
- Ensure category coverage balance: attempt to cover the highest impact unresolved categories first; avoid asking two low-impact questions when a single high-impact area (e.g., security posture) is unresolved.
- Exclude questions already answered, trivial stylistic preferences, or plan-level execution details (unless blocking correctness).
- Favor clarifications that reduce downstream rework risk or prevent misaligned acceptance tests.
- If more than 5 categories remain unresolved, select the top 5 by (Impact * Uncertainty) heuristic.
4. Sequential questioning loop (interactive):
- Present EXACTLY ONE question at a time.
- For multiplechoice questions render options as a Markdown table:
| Option | Description |
|--------|-------------|
| A | <Option A description> |
| B | <Option B description> |
| C | <Option C description> | (add D/E as needed up to 5)
| Short | Provide a different short answer (<=5 words) | (Include only if free-form alternative is appropriate)
- For shortanswer style (no meaningful discrete options), output a single line after the question: `Format: Short answer (<=5 words)`.
- After the user answers:
* Validate the answer maps to one option or fits the <=5 word constraint.
* If ambiguous, ask for a quick disambiguation (count still belongs to same question; do not advance).
* Once satisfactory, record it in working memory (do not yet write to disk) and move to the next queued question.
- Stop asking further questions when:
* All critical ambiguities resolved early (remaining queued items become unnecessary), OR
* User signals completion ("done", "good", "no more"), OR
* You reach 5 asked questions.
- Never reveal future queued questions in advance.
- If no valid questions exist at start, immediately report no critical ambiguities.
5. Integration after EACH accepted answer (incremental update approach):
- Maintain in-memory representation of the spec (loaded once at start) plus the raw file contents.
- For the first integrated answer in this session:
* Ensure a `## Clarifications` section exists (create it just after the highest-level contextual/overview section per the spec template if missing).
* Under it, create (if not present) a `### Session YYYY-MM-DD` subheading for today.
- Append a bullet line immediately after acceptance: `- Q: <question> → A: <final answer>`.
- Then immediately apply the clarification to the most appropriate section(s):
* Functional ambiguity → Update or add a bullet in Functional Requirements.
* User interaction / actor distinction → Update User Stories or Actors subsection (if present) with clarified role, constraint, or scenario.
* Data shape / entities → Update Data Model (add fields, types, relationships) preserving ordering; note added constraints succinctly.
* Non-functional constraint → Add/modify measurable criteria in Non-Functional / Quality Attributes section (convert vague adjective to metric or explicit target).
* Edge case / negative flow → Add a new bullet under Edge Cases / Error Handling (or create such subsection if template provides placeholder for it).
* Terminology conflict → Normalize term across spec; retain original only if necessary by adding `(formerly referred to as "X")` once.
- If the clarification invalidates an earlier ambiguous statement, replace that statement instead of duplicating; leave no obsolete contradictory text.
- Save the spec file AFTER each integration to minimize risk of context loss (atomic overwrite).
- Preserve formatting: do not reorder unrelated sections; keep heading hierarchy intact.
- Keep each inserted clarification minimal and testable (avoid narrative drift).
6. Validation (performed after EACH write plus final pass):
- Clarifications session contains exactly one bullet per accepted answer (no duplicates).
- Total asked (accepted) questions ≤ 5.
- Updated sections contain no lingering vague placeholders the new answer was meant to resolve.
- No contradictory earlier statement remains (scan for now-invalid alternative choices removed).
- Markdown structure valid; only allowed new headings: `## Clarifications`, `### Session YYYY-MM-DD`.
- Terminology consistency: same canonical term used across all updated sections.
7. Write the updated spec back to `FEATURE_SPEC`.
8. Report completion (after questioning loop ends or early termination):
- Number of questions asked & answered.
- Path to updated spec.
- Sections touched (list names).
- Coverage summary table listing each taxonomy category with Status: Resolved (was Partial/Missing and addressed), Deferred (exceeds question quota or better suited for planning), Clear (already sufficient), Outstanding (still Partial/Missing but low impact).
- If any Outstanding or Deferred remain, recommend whether to proceed to `/speckit.plan` or run `/speckit.clarify` again later post-plan.
- Suggested next command.
Behavior rules:
- If no meaningful ambiguities found (or all potential questions would be low-impact), respond: "No critical ambiguities detected worth formal clarification." and suggest proceeding.
- If spec file missing, instruct user to run `/speckit.specify` first (do not create a new spec here).
- Never exceed 5 total asked questions (clarification retries for a single question do not count as new questions).
- Avoid speculative tech stack questions unless the absence blocks functional clarity.
- Respect user early termination signals ("stop", "done", "proceed").
- If no questions asked due to full coverage, output a compact coverage summary (all categories Clear) then suggest advancing.
- If quota reached with unresolved high-impact categories remaining, explicitly flag them under Deferred with rationale.
Context for prioritization: $ARGUMENTS

View File

@@ -0,0 +1,77 @@
---
description: Create or update the project constitution from interactive or provided principle inputs, ensuring all dependent templates stay in sync.
---
## User Input
```text
$ARGUMENTS
```
You **MUST** consider the user input before proceeding (if not empty).
## Outline
You are updating the project constitution at `.specify/memory/constitution.md`. This file is a TEMPLATE containing placeholder tokens in square brackets (e.g. `[PROJECT_NAME]`, `[PRINCIPLE_1_NAME]`). Your job is to (a) collect/derive concrete values, (b) fill the template precisely, and (c) propagate any amendments across dependent artifacts.
Follow this execution flow:
1. Load the existing constitution template at `.specify/memory/constitution.md`.
- Identify every placeholder token of the form `[ALL_CAPS_IDENTIFIER]`.
**IMPORTANT**: The user might require less or more principles than the ones used in the template. If a number is specified, respect that - follow the general template. You will update the doc accordingly.
2. Collect/derive values for placeholders:
- If user input (conversation) supplies a value, use it.
- Otherwise infer from existing repo context (README, docs, prior constitution versions if embedded).
- For governance dates: `RATIFICATION_DATE` is the original adoption date (if unknown ask or mark TODO), `LAST_AMENDED_DATE` is today if changes are made, otherwise keep previous.
- `CONSTITUTION_VERSION` must increment according to semantic versioning rules:
* MAJOR: Backward incompatible governance/principle removals or redefinitions.
* MINOR: New principle/section added or materially expanded guidance.
* PATCH: Clarifications, wording, typo fixes, non-semantic refinements.
- If version bump type ambiguous, propose reasoning before finalizing.
3. Draft the updated constitution content:
- Replace every placeholder with concrete text (no bracketed tokens left except intentionally retained template slots that the project has chosen not to define yet—explicitly justify any left).
- Preserve heading hierarchy and comments can be removed once replaced unless they still add clarifying guidance.
- Ensure each Principle section: succinct name line, paragraph (or bullet list) capturing nonnegotiable rules, explicit rationale if not obvious.
- Ensure Governance section lists amendment procedure, versioning policy, and compliance review expectations.
4. Consistency propagation checklist (convert prior checklist into active validations):
- Read `.specify/templates/plan-template.md` and ensure any "Constitution Check" or rules align with updated principles.
- Read `.specify/templates/spec-template.md` for scope/requirements alignment—update if constitution adds/removes mandatory sections or constraints.
- Read `.specify/templates/tasks-template.md` and ensure task categorization reflects new or removed principle-driven task types (e.g., observability, versioning, testing discipline).
- Read each command file in `.specify/templates/commands/*.md` (including this one) to verify no outdated references (agent-specific names like CLAUDE only) remain when generic guidance is required.
- Read any runtime guidance docs (e.g., `README.md`, `docs/quickstart.md`, or agent-specific guidance files if present). Update references to principles changed.
5. Produce a Sync Impact Report (prepend as an HTML comment at top of the constitution file after update):
- Version change: old → new
- List of modified principles (old title → new title if renamed)
- Added sections
- Removed sections
- Templates requiring updates (✅ updated / ⚠ pending) with file paths
- Follow-up TODOs if any placeholders intentionally deferred.
6. Validation before final output:
- No remaining unexplained bracket tokens.
- Version line matches report.
- Dates ISO format YYYY-MM-DD.
- Principles are declarative, testable, and free of vague language ("should" → replace with MUST/SHOULD rationale where appropriate).
7. Write the completed constitution back to `.specify/memory/constitution.md` (overwrite).
8. Output a final summary to the user with:
- New version and bump rationale.
- Any files flagged for manual follow-up.
- Suggested commit message (e.g., `docs: amend constitution to vX.Y.Z (principle additions + governance update)`).
Formatting & Style Requirements:
- Use Markdown headings exactly as in the template (do not demote/promote levels).
- Wrap long rationale lines to keep readability (<100 chars ideally) but do not hard enforce with awkward breaks.
- Keep a single blank line between sections.
- Avoid trailing whitespace.
If the user supplies partial updates (e.g., only one principle revision), still perform validation and version decision steps.
If critical info missing (e.g., ratification date truly unknown), insert `TODO(<FIELD_NAME>): explanation` and include in the Sync Impact Report under deferred items.
Do not create a new template; always operate on the existing `.specify/memory/constitution.md` file.

View File

@@ -0,0 +1,89 @@
---
description: Execute the implementation plan by processing and executing all tasks defined in tasks.md
---
## User Input
```text
$ARGUMENTS
```
You **MUST** consider the user input before proceeding (if not empty).
## Outline
1. Run `.specify/scripts/bash/check-prerequisites.sh --json --require-tasks --include-tasks` from repo root and parse FEATURE_DIR and AVAILABLE_DOCS list. All paths must be absolute.
2. **Check checklists status** (if FEATURE_DIR/checklists/ exists):
- Scan all checklist files in the checklists/ directory
- For each checklist, count:
* Total items: All lines matching `- [ ]` or `- [X]` or `- [x]`
* Completed items: Lines matching `- [X]` or `- [x]`
* Incomplete items: Lines matching `- [ ]`
- Create a status table:
```
| Checklist | Total | Completed | Incomplete | Status |
|-----------|-------|-----------|------------|--------|
| ux.md | 12 | 12 | 0 | ✓ PASS |
| test.md | 8 | 5 | 3 | ✗ FAIL |
| security.md | 6 | 6 | 0 | ✓ PASS |
```
- Calculate overall status:
* **PASS**: All checklists have 0 incomplete items
* **FAIL**: One or more checklists have incomplete items
- **If any checklist is incomplete**:
* Display the table with incomplete item counts
* **STOP** and ask: "Some checklists are incomplete. Do you want to proceed with implementation anyway? (yes/no)"
* Wait for user response before continuing
* If user says "no" or "wait" or "stop", halt execution
* If user says "yes" or "proceed" or "continue", proceed to step 3
- **If all checklists are complete**:
* Display the table showing all checklists passed
* Automatically proceed to step 3
3. Load and analyze the implementation context:
- **REQUIRED**: Read tasks.md for the complete task list and execution plan
- **REQUIRED**: Read plan.md for tech stack, architecture, and file structure
- **IF EXISTS**: Read data-model.md for entities and relationships
- **IF EXISTS**: Read contracts/ for API specifications and test requirements
- **IF EXISTS**: Read research.md for technical decisions and constraints
- **IF EXISTS**: Read quickstart.md for integration scenarios
4. Parse tasks.md structure and extract:
- **Task phases**: Setup, Tests, Core, Integration, Polish
- **Task dependencies**: Sequential vs parallel execution rules
- **Task details**: ID, description, file paths, parallel markers [P]
- **Execution flow**: Order and dependency requirements
5. Execute implementation following the task plan:
- **Phase-by-phase execution**: Complete each phase before moving to the next
- **Respect dependencies**: Run sequential tasks in order, parallel tasks [P] can run together
- **Follow TDD approach**: Execute test tasks before their corresponding implementation tasks
- **File-based coordination**: Tasks affecting the same files must run sequentially
- **Validation checkpoints**: Verify each phase completion before proceeding
6. Implementation execution rules:
- **Setup first**: Initialize project structure, dependencies, configuration
- **Tests before code**: If you need to write tests for contracts, entities, and integration scenarios
- **Core development**: Implement models, services, CLI commands, endpoints
- **Integration work**: Database connections, middleware, logging, external services
- **Polish and validation**: Unit tests, performance optimization, documentation
7. Progress tracking and error handling:
- Report progress after each completed task
- Halt execution if any non-parallel task fails
- For parallel tasks [P], continue with successful tasks, report failed ones
- Provide clear error messages with context for debugging
- Suggest next steps if implementation cannot proceed
- **IMPORTANT** For completed tasks, make sure to mark the task off as [X] in the tasks file.
8. Completion validation:
- Verify all required tasks are completed
- Check that implemented features match the original specification
- Validate that tests pass and coverage meets requirements
- Confirm the implementation follows the technical plan
- Report final status with summary of completed work
Note: This command assumes a complete task breakdown exists in tasks.md. If tasks are incomplete or missing, suggest running `/tasks` first to regenerate the task list.

View File

@@ -0,0 +1,80 @@
---
description: Execute the implementation planning workflow using the plan template to generate design artifacts.
---
## User Input
```text
$ARGUMENTS
```
You **MUST** consider the user input before proceeding (if not empty).
## Outline
1. **Setup**: Run `.specify/scripts/bash/setup-plan.sh --json` from repo root and parse JSON for FEATURE_SPEC, IMPL_PLAN, SPECS_DIR, BRANCH.
2. **Load context**: Read FEATURE_SPEC and `.specify.specify/memory/constitution.md`. Load IMPL_PLAN template (already copied).
3. **Execute plan workflow**: Follow the structure in IMPL_PLAN template to:
- Fill Technical Context (mark unknowns as "NEEDS CLARIFICATION")
- Fill Constitution Check section from constitution
- Evaluate gates (ERROR if violations unjustified)
- Phase 0: Generate research.md (resolve all NEEDS CLARIFICATION)
- Phase 1: Generate data-model.md, contracts/, quickstart.md
- Phase 1: Update agent context by running the agent script
- Re-evaluate Constitution Check post-design
4. **Stop and report**: Command ends after Phase 2 planning. Report branch, IMPL_PLAN path, and generated artifacts.
## Phases
### Phase 0: Outline & Research
1. **Extract unknowns from Technical Context** above:
- For each NEEDS CLARIFICATION → research task
- For each dependency → best practices task
- For each integration → patterns task
2. **Generate and dispatch research agents**:
```
For each unknown in Technical Context:
Task: "Research {unknown} for {feature context}"
For each technology choice:
Task: "Find best practices for {tech} in {domain}"
```
3. **Consolidate findings** in `research.md` using format:
- Decision: [what was chosen]
- Rationale: [why chosen]
- Alternatives considered: [what else evaluated]
**Output**: research.md with all NEEDS CLARIFICATION resolved
### Phase 1: Design & Contracts
**Prerequisites:** `research.md` complete
1. **Extract entities from feature spec** → `data-model.md`:
- Entity name, fields, relationships
- Validation rules from requirements
- State transitions if applicable
2. **Generate API contracts** from functional requirements:
- For each user action → endpoint
- Use standard REST/GraphQL patterns
- Output OpenAPI/GraphQL schema to `/contracts/`
3. **Agent context update**:
- Run `.specify/scripts/bash/update-agent-context.sh claude`
- These scripts detect which AI agent is in use
- Update the appropriate agent-specific context file
- Add only new technology from current plan
- Preserve manual additions between markers
**Output**: data-model.md, /contracts/*, quickstart.md, agent-specific file
## Key rules
- Use absolute paths
- ERROR on gate failures or unresolved clarifications

View File

@@ -0,0 +1,208 @@
---
description: Create or update the feature specification from a natural language feature description.
---
## User Input
```text
$ARGUMENTS
```
You **MUST** consider the user input before proceeding (if not empty).
## Outline
The text the user typed after `/speckit.specify` in the triggering message **is** the feature description. Assume you always have it available in this conversation even if `$ARGUMENTS` appears literally below. Do not ask the user to repeat it unless they provided an empty command.
Given that feature description, do this:
1. Run the script `.specify/scripts/bash/create-new-feature.sh --json "$ARGUMENTS"` from repo root and parse its JSON output for BRANCH_NAME and SPEC_FILE. All file paths must be absolute.
**IMPORTANT** You must only ever run this script once. The JSON is provided in the terminal as output - always refer to it to get the actual content you're looking for.
2. Load `.specify/templates/spec-template.md` to understand required sections.
3. Follow this execution flow:
1. Parse user description from Input
If empty: ERROR "No feature description provided"
2. Extract key concepts from description
Identify: actors, actions, data, constraints
3. For unclear aspects:
- Make informed guesses based on context and industry standards
- Only mark with [NEEDS CLARIFICATION: specific question] if:
- The choice significantly impacts feature scope or user experience
- Multiple reasonable interpretations exist with different implications
- No reasonable default exists
- **LIMIT: Maximum 3 [NEEDS CLARIFICATION] markers total**
- Prioritize clarifications by impact: scope > security/privacy > user experience > technical details
4. Fill User Scenarios & Testing section
If no clear user flow: ERROR "Cannot determine user scenarios"
5. Generate Functional Requirements
Each requirement must be testable
Use reasonable defaults for unspecified details (document assumptions in Assumptions section)
6. Define Success Criteria
Create measurable, technology-agnostic outcomes
Include both quantitative metrics (time, performance, volume) and qualitative measures (user satisfaction, task completion)
Each criterion must be verifiable without implementation details
7. Identify Key Entities (if data involved)
8. Return: SUCCESS (spec ready for planning)
4. Write the specification to SPEC_FILE using the template structure, replacing placeholders with concrete details derived from the feature description (arguments) while preserving section order and headings.
5. **Specification Quality Validation**: After writing the initial spec, validate it against quality criteria:
a. **Create Spec Quality Checklist**: Generate a checklist file at `FEATURE_DIR/checklists/requirements.md` using the checklist template structure with these validation items:
```markdown
# Specification Quality Checklist: [FEATURE NAME]
**Purpose**: Validate specification completeness and quality before proceeding to planning
**Created**: [DATE]
**Feature**: [Link to spec.md]
## Content Quality
- [ ] No implementation details (languages, frameworks, APIs)
- [ ] Focused on user value and business needs
- [ ] Written for non-technical stakeholders
- [ ] All mandatory sections completed
## Requirement Completeness
- [ ] No [NEEDS CLARIFICATION] markers remain
- [ ] Requirements are testable and unambiguous
- [ ] Success criteria are measurable
- [ ] Success criteria are technology-agnostic (no implementation details)
- [ ] All acceptance scenarios are defined
- [ ] Edge cases are identified
- [ ] Scope is clearly bounded
- [ ] Dependencies and assumptions identified
## Feature Readiness
- [ ] All functional requirements have clear acceptance criteria
- [ ] User scenarios cover primary flows
- [ ] Feature meets measurable outcomes defined in Success Criteria
- [ ] No implementation details leak into specification
## Notes
- Items marked incomplete require spec updates before `/speckit.clarify` or `/speckit.plan`
```
b. **Run Validation Check**: Review the spec against each checklist item:
- For each item, determine if it passes or fails
- Document specific issues found (quote relevant spec sections)
c. **Handle Validation Results**:
- **If all items pass**: Mark checklist complete and proceed to step 6
- **If items fail (excluding [NEEDS CLARIFICATION])**:
1. List the failing items and specific issues
2. Update the spec to address each issue
3. Re-run validation until all items pass (max 3 iterations)
4. If still failing after 3 iterations, document remaining issues in checklist notes and warn user
- **If [NEEDS CLARIFICATION] markers remain**:
1. Extract all [NEEDS CLARIFICATION: ...] markers from the spec
2. **LIMIT CHECK**: If more than 3 markers exist, keep only the 3 most critical (by scope/security/UX impact) and make informed guesses for the rest
3. For each clarification needed (max 3), present options to user in this format:
```markdown
## Question [N]: [Topic]
**Context**: [Quote relevant spec section]
**What we need to know**: [Specific question from NEEDS CLARIFICATION marker]
**Suggested Answers**:
| Option | Answer | Implications |
|--------|--------|--------------|
| A | [First suggested answer] | [What this means for the feature] |
| B | [Second suggested answer] | [What this means for the feature] |
| C | [Third suggested answer] | [What this means for the feature] |
| Custom | Provide your own answer | [Explain how to provide custom input] |
**Your choice**: _[Wait for user response]_
```
4. **CRITICAL - Table Formatting**: Ensure markdown tables are properly formatted:
- Use consistent spacing with pipes aligned
- Each cell should have spaces around content: `| Content |` not `|Content|`
- Header separator must have at least 3 dashes: `|--------|`
- Test that the table renders correctly in markdown preview
5. Number questions sequentially (Q1, Q2, Q3 - max 3 total)
6. Present all questions together before waiting for responses
7. Wait for user to respond with their choices for all questions (e.g., "Q1: A, Q2: Custom - [details], Q3: B")
8. Update the spec by replacing each [NEEDS CLARIFICATION] marker with the user's selected or provided answer
9. Re-run validation after all clarifications are resolved
d. **Update Checklist**: After each validation iteration, update the checklist file with current pass/fail status
6. Report completion with branch name, spec file path, checklist results, and readiness for the next phase (`/speckit.clarify` or `/speckit.plan`).
**NOTE:** The script creates and checks out the new branch and initializes the spec file before writing.
## General Guidelines
## Quick Guidelines
- Focus on **WHAT** users need and **WHY**.
- Avoid HOW to implement (no tech stack, APIs, code structure).
- Written for business stakeholders, not developers.
- DO NOT create any checklists that are embedded in the spec. That will be a separate command.
### Section Requirements
- **Mandatory sections**: Must be completed for every feature
- **Optional sections**: Include only when relevant to the feature
- When a section doesn't apply, remove it entirely (don't leave as "N/A")
### For AI Generation
When creating this spec from a user prompt:
1. **Make informed guesses**: Use context, industry standards, and common patterns to fill gaps
2. **Document assumptions**: Record reasonable defaults in the Assumptions section
3. **Limit clarifications**: Maximum 3 [NEEDS CLARIFICATION] markers - use only for critical decisions that:
- Significantly impact feature scope or user experience
- Have multiple reasonable interpretations with different implications
- Lack any reasonable default
4. **Prioritize clarifications**: scope > security/privacy > user experience > technical details
5. **Think like a tester**: Every vague requirement should fail the "testable and unambiguous" checklist item
6. **Common areas needing clarification** (only if no reasonable default exists):
- Feature scope and boundaries (include/exclude specific use cases)
- User types and permissions (if multiple conflicting interpretations possible)
- Security/compliance requirements (when legally/financially significant)
**Examples of reasonable defaults** (don't ask about these):
- Data retention: Industry-standard practices for the domain
- Performance targets: Standard web/mobile app expectations unless specified
- Error handling: User-friendly messages with appropriate fallbacks
- Authentication method: Standard session-based or OAuth2 for web apps
- Integration patterns: RESTful APIs unless specified otherwise
### Success Criteria Guidelines
Success criteria must be:
1. **Measurable**: Include specific metrics (time, percentage, count, rate)
2. **Technology-agnostic**: No mention of frameworks, languages, databases, or tools
3. **User-focused**: Describe outcomes from user/business perspective, not system internals
4. **Verifiable**: Can be tested/validated without knowing implementation details
**Good examples**:
- "Users can complete checkout in under 3 minutes"
- "System supports 10,000 concurrent users"
- "95% of searches return results in under 1 second"
- "Task completion rate improves by 40%"
**Bad examples** (implementation-focused):
- "API response time is under 200ms" (too technical, use "Users see results instantly")
- "Database can handle 1000 TPS" (implementation detail, use user-facing metric)
- "React components render efficiently" (framework-specific)
- "Redis cache hit rate above 80%" (technology-specific)

View File

@@ -0,0 +1,111 @@
---
description: Generate an actionable, dependency-ordered tasks.md for the feature based on available design artifacts.
---
## User Input
```text
$ARGUMENTS
```
You **MUST** consider the user input before proceeding (if not empty).
## Outline
1. **Setup**: Run `.specify/scripts/bash/check-prerequisites.sh --json` from repo root and parse FEATURE_DIR and AVAILABLE_DOCS list. All paths must be absolute.
2. **Load design documents**: Read from FEATURE_DIR:
- **Required**: plan.md (tech stack, libraries, structure), spec.md (user stories with priorities)
- **Optional**: data-model.md (entities), contracts/ (API endpoints), research.md (decisions), quickstart.md (test scenarios)
- Note: Not all projects have all documents. Generate tasks based on what's available.
3. **Execute task generation workflow** (follow the template structure):
- Load plan.md and extract tech stack, libraries, project structure
- **Load spec.md and extract user stories with their priorities (P1, P2, P3, etc.)**
- If data-model.md exists: Extract entities → map to user stories
- If contracts/ exists: Each file → map endpoints to user stories
- If research.md exists: Extract decisions → generate setup tasks
- **Generate tasks ORGANIZED BY USER STORY**:
- Setup tasks (shared infrastructure needed by all stories)
- **Foundational tasks (prerequisites that must complete before ANY user story can start)**
- For each user story (in priority order P1, P2, P3...):
- Group all tasks needed to complete JUST that story
- Include models, services, endpoints, UI components specific to that story
- Mark which tasks are [P] parallelizable
- If tests requested: Include tests specific to that story
- Polish/Integration tasks (cross-cutting concerns)
- **Tests are OPTIONAL**: Only generate test tasks if explicitly requested in the feature spec or user asks for TDD approach
- Apply task rules:
- Different files = mark [P] for parallel
- Same file = sequential (no [P])
- If tests requested: Tests before implementation (TDD order)
- Number tasks sequentially (T001, T002...)
- Generate dependency graph showing user story completion order
- Create parallel execution examples per user story
- Validate task completeness (each user story has all needed tasks, independently testable)
4. **Generate tasks.md**: Use `.specify.specify/templates/tasks-template.md` as structure, fill with:
- Correct feature name from plan.md
- Phase 1: Setup tasks (project initialization)
- Phase 2: Foundational tasks (blocking prerequisites for all user stories)
- Phase 3+: One phase per user story (in priority order from spec.md)
- Each phase includes: story goal, independent test criteria, tests (if requested), implementation tasks
- Clear [Story] labels (US1, US2, US3...) for each task
- [P] markers for parallelizable tasks within each story
- Checkpoint markers after each story phase
- Final Phase: Polish & cross-cutting concerns
- Numbered tasks (T001, T002...) in execution order
- Clear file paths for each task
- Dependencies section showing story completion order
- Parallel execution examples per story
- Implementation strategy section (MVP first, incremental delivery)
5. **Report**: Output path to generated tasks.md and summary:
- Total task count
- Task count per user story
- Parallel opportunities identified
- Independent test criteria for each story
- Suggested MVP scope (typically just User Story 1)
Context for task generation: $ARGUMENTS
The tasks.md should be immediately executable - each task must be specific enough that an LLM can complete it without additional context.
## Task Generation Rules
**IMPORTANT**: Tests are optional. Only generate test tasks if the user explicitly requested testing or TDD approach in the feature specification.
**CRITICAL**: Tasks MUST be organized by user story to enable independent implementation and testing.
1. **From User Stories (spec.md)** - PRIMARY ORGANIZATION:
- Each user story (P1, P2, P3...) gets its own phase
- Map all related components to their story:
- Models needed for that story
- Services needed for that story
- Endpoints/UI needed for that story
- If tests requested: Tests specific to that story
- Mark story dependencies (most stories should be independent)
2. **From Contracts**:
- Map each contract/endpoint → to the user story it serves
- If tests requested: Each contract → contract test task [P] before implementation in that story's phase
3. **From Data Model**:
- Map each entity → to the user story(ies) that need it
- If entity serves multiple stories: Put in earliest story or Setup phase
- Relationships → service layer tasks in appropriate story phase
4. **From Setup/Infrastructure**:
- Shared infrastructure → Setup phase (Phase 1)
- Foundational/blocking tasks → Foundational phase (Phase 2)
- Examples: Database schema setup, authentication framework, core libraries, base configurations
- These MUST complete before any user story can be implemented
- Story-specific setup → within that story's phase
5. **Ordering**:
- Phase 1: Setup (project initialization)
- Phase 2: Foundational (blocking prerequisites - must complete before user stories)
- Phase 3+: User Stories in priority order (P1, P2, P3...)
- Within each story: Tests (if requested) → Models → Services → Endpoints → Integration
- Final Phase: Polish & Cross-Cutting Concerns
- Each user story phase should be a complete, independently testable increment

View File

@@ -0,0 +1,72 @@
# Spec Workflow MCP Server Configuration File
# ============================================
#
# This is an example configuration file for the Spec Workflow MCP Server.
# Copy this file to 'config.toml' in the same directory to use it.
#
# Configuration Precedence:
# 1. Command-line arguments (highest priority)
# 2. Config file settings
# 3. Built-in defaults (lowest priority)
#
# All settings are optional. Uncomment and modify as needed.
# Please note that not all MCP clients will support loading this config file due to the nature of where they are running from.
# Project directory path
# The root directory of your project where spec files are located.
# Note: You may have to use double slashes (\\) instead of single slashes (/) on Windows or for certain clients.
# Supports tilde (~) expansion for home directory.
# Default: current working directory
# projectDir = "."
# projectDir = "~/my-project"
# projectDir = "/absolute/path/to/project"
# Dashboard port
# The port number for the web dashboard.
# Must be between 1024 and 65535.
# Default: ephemeral port (automatically assigned)
# port = 3000
# Auto-start dashboard
# Automatically launch the dashboard when the MCP server starts.
# The dashboard will open in your default browser.
# Default: false
# autoStartDashboard = false
# Dashboard-only mode
# Run only the web dashboard without the MCP server.
# Useful for standalone dashboard usage.
# Default: false
# dashboardOnly = false
# Language
# Set the interface language for internationalization (i18n).
# Available languages depend on your installation.
# Common values: "en" (English), "ja" (Japanese), etc.
# Default: system language or "en"
# lang = "en"
# Example configurations:
# =====================
# Example 1: Development setup with auto-started dashboard
# ----------------------------------------------------------
# projectDir = "~/dev/my-project"
# autoStartDashboard = true
# port = 3456
# Example 2: Production MCP server without dashboard
# ---------------------------------------------------
# projectDir = "/var/projects/production"
# autoStartDashboard = false
# Example 3: Dashboard-only mode for viewing specs
# -------------------------------------------------
# projectDir = "."
# dashboardOnly = true
# port = 8080
# Example 4: Japanese language interface
# ---------------------------------------
# lang = "ja"
# autoStartDashboard = true

View File

@@ -0,0 +1,96 @@
# Design Document
## Overview
[High-level description of the feature and its place in the overall system]
## Steering Document Alignment
### Technical Standards (tech.md)
[How the design follows documented technical patterns and standards]
### Project Structure (structure.md)
[How the implementation will follow project organization conventions]
## Code Reuse Analysis
[What existing code will be leveraged, extended, or integrated with this feature]
### Existing Components to Leverage
- **[Component/Utility Name]**: [How it will be used]
- **[Service/Helper Name]**: [How it will be extended]
### Integration Points
- **[Existing System/API]**: [How the new feature will integrate]
- **[Database/Storage]**: [How data will connect to existing schemas]
## Architecture
[Describe the overall architecture and design patterns used]
### Modular Design Principles
- **Single File Responsibility**: Each file should handle one specific concern or domain
- **Component Isolation**: Create small, focused components rather than large monolithic files
- **Service Layer Separation**: Separate data access, business logic, and presentation layers
- **Utility Modularity**: Break utilities into focused, single-purpose modules
```mermaid
graph TD
A[Component A] --> B[Component B]
B --> C[Component C]
```
## Components and Interfaces
### Component 1
- **Purpose:** [What this component does]
- **Interfaces:** [Public methods/APIs]
- **Dependencies:** [What it depends on]
- **Reuses:** [Existing components/utilities it builds upon]
### Component 2
- **Purpose:** [What this component does]
- **Interfaces:** [Public methods/APIs]
- **Dependencies:** [What it depends on]
- **Reuses:** [Existing components/utilities it builds upon]
## Data Models
### Model 1
```
[Define the structure of Model1 in your language]
- id: [unique identifier type]
- name: [string/text type]
- [Additional properties as needed]
```
### Model 2
```
[Define the structure of Model2 in your language]
- id: [unique identifier type]
- [Additional properties as needed]
```
## Error Handling
### Error Scenarios
1. **Scenario 1:** [Description]
- **Handling:** [How to handle]
- **User Impact:** [What user sees]
2. **Scenario 2:** [Description]
- **Handling:** [How to handle]
- **User Impact:** [What user sees]
## Testing Strategy
### Unit Testing
- [Unit testing approach]
- [Key components to test]
### Integration Testing
- [Integration testing approach]
- [Key flows to test]
### End-to-End Testing
- [E2E testing approach]
- [User scenarios to test]

View File

@@ -0,0 +1,51 @@
# Product Overview
## Product Purpose
[Describe the core purpose of this product/project. What problem does it solve?]
## Target Users
[Who are the primary users of this product? What are their needs and pain points?]
## Key Features
[List the main features that deliver value to users]
1. **Feature 1**: [Description]
2. **Feature 2**: [Description]
3. **Feature 3**: [Description]
## Business Objectives
[What are the business goals this product aims to achieve?]
- [Objective 1]
- [Objective 2]
- [Objective 3]
## Success Metrics
[How will we measure the success of this product?]
- [Metric 1]: [Target]
- [Metric 2]: [Target]
- [Metric 3]: [Target]
## Product Principles
[Core principles that guide product decisions]
1. **[Principle 1]**: [Explanation]
2. **[Principle 2]**: [Explanation]
3. **[Principle 3]**: [Explanation]
## Monitoring & Visibility (if applicable)
[How do users track progress and monitor the system?]
- **Dashboard Type**: [e.g., Web-based, CLI, Desktop app]
- **Real-time Updates**: [e.g., WebSocket, polling, push notifications]
- **Key Metrics Displayed**: [What information is most important to surface]
- **Sharing Capabilities**: [e.g., read-only links, exports, reports]
## Future Vision
[Where do we see this product evolving in the future?]
### Potential Enhancements
- **Remote Access**: [e.g., Tunnel features for sharing dashboards with stakeholders]
- **Analytics**: [e.g., Historical trends, performance metrics]
- **Collaboration**: [e.g., Multi-user support, commenting]

View File

@@ -0,0 +1,50 @@
# Requirements Document
## Introduction
[Provide a brief overview of the feature, its purpose, and its value to users]
## Alignment with Product Vision
[Explain how this feature supports the goals outlined in product.md]
## Requirements
### Requirement 1
**User Story:** As a [role], I want [feature], so that [benefit]
#### Acceptance Criteria
1. WHEN [event] THEN [system] SHALL [response]
2. IF [precondition] THEN [system] SHALL [response]
3. WHEN [event] AND [condition] THEN [system] SHALL [response]
### Requirement 2
**User Story:** As a [role], I want [feature], so that [benefit]
#### Acceptance Criteria
1. WHEN [event] THEN [system] SHALL [response]
2. IF [precondition] THEN [system] SHALL [response]
## Non-Functional Requirements
### Code Architecture and Modularity
- **Single Responsibility Principle**: Each file should have a single, well-defined purpose
- **Modular Design**: Components, utilities, and services should be isolated and reusable
- **Dependency Management**: Minimize interdependencies between modules
- **Clear Interfaces**: Define clean contracts between components and layers
### Performance
- [Performance requirements]
### Security
- [Security requirements]
### Reliability
- [Reliability requirements]
### Usability
- [Usability requirements]

View File

@@ -0,0 +1,145 @@
# Project Structure
## Directory Organization
```
[Define your project's directory structure. Examples below - adapt to your project type]
Example for a library/package:
project-root/
├── src/ # Source code
├── tests/ # Test files
├── docs/ # Documentation
├── examples/ # Usage examples
└── [build/dist/out] # Build output
Example for an application:
project-root/
├── [src/app/lib] # Main source code
├── [assets/resources] # Static resources
├── [config/settings] # Configuration
├── [scripts/tools] # Build/utility scripts
└── [tests/spec] # Test files
Common patterns:
- Group by feature/module
- Group by layer (UI, business logic, data)
- Group by type (models, controllers, views)
- Flat structure for simple projects
```
## Naming Conventions
### Files
- **Components/Modules**: [e.g., `PascalCase`, `snake_case`, `kebab-case`]
- **Services/Handlers**: [e.g., `UserService`, `user_service`, `user-service`]
- **Utilities/Helpers**: [e.g., `dateUtils`, `date_utils`, `date-utils`]
- **Tests**: [e.g., `[filename]_test`, `[filename].test`, `[filename]Test`]
### Code
- **Classes/Types**: [e.g., `PascalCase`, `CamelCase`, `snake_case`]
- **Functions/Methods**: [e.g., `camelCase`, `snake_case`, `PascalCase`]
- **Constants**: [e.g., `UPPER_SNAKE_CASE`, `SCREAMING_CASE`, `PascalCase`]
- **Variables**: [e.g., `camelCase`, `snake_case`, `lowercase`]
## Import Patterns
### Import Order
1. External dependencies
2. Internal modules
3. Relative imports
4. Style imports
### Module/Package Organization
```
[Describe your project's import/include patterns]
Examples:
- Absolute imports from project root
- Relative imports within modules
- Package/namespace organization
- Dependency management approach
```
## Code Structure Patterns
[Define common patterns for organizing code within files. Below are examples - choose what applies to your project]
### Module/Class Organization
```
Example patterns:
1. Imports/includes/dependencies
2. Constants and configuration
3. Type/interface definitions
4. Main implementation
5. Helper/utility functions
6. Exports/public API
```
### Function/Method Organization
```
Example patterns:
- Input validation first
- Core logic in the middle
- Error handling throughout
- Clear return points
```
### File Organization Principles
```
Choose what works for your project:
- One class/module per file
- Related functionality grouped together
- Public API at the top/bottom
- Implementation details hidden
```
## Code Organization Principles
1. **Single Responsibility**: Each file should have one clear purpose
2. **Modularity**: Code should be organized into reusable modules
3. **Testability**: Structure code to be easily testable
4. **Consistency**: Follow patterns established in the codebase
## Module Boundaries
[Define how different parts of your project interact and maintain separation of concerns]
Examples of boundary patterns:
- **Core vs Plugins**: Core functionality vs extensible plugins
- **Public API vs Internal**: What's exposed vs implementation details
- **Platform-specific vs Cross-platform**: OS-specific code isolation
- **Stable vs Experimental**: Production code vs experimental features
- **Dependencies direction**: Which modules can depend on which
## Code Size Guidelines
[Define your project's guidelines for file and function sizes]
Suggested guidelines:
- **File size**: [Define maximum lines per file]
- **Function/Method size**: [Define maximum lines per function]
- **Class/Module complexity**: [Define complexity limits]
- **Nesting depth**: [Maximum nesting levels]
## Dashboard/Monitoring Structure (if applicable)
[How dashboard or monitoring components are organized]
### Example Structure:
```
src/
└── dashboard/ # Self-contained dashboard subsystem
├── server/ # Backend server components
├── client/ # Frontend assets
├── shared/ # Shared types/utilities
└── public/ # Static assets
```
### Separation of Concerns
- Dashboard isolated from core business logic
- Own CLI entry point for independent operation
- Minimal dependencies on main application
- Can be disabled without affecting core functionality
## Documentation Standards
- All public APIs must have documentation
- Complex logic should include inline comments
- README files for major modules
- Follow language-specific documentation conventions

View File

@@ -0,0 +1,139 @@
# Tasks Document
- [ ] 1. Create core interfaces in src/types/feature.ts
- File: src/types/feature.ts
- Define TypeScript interfaces for feature data structures
- Extend existing base interfaces from base.ts
- Purpose: Establish type safety for feature implementation
- _Leverage: src/types/base.ts_
- _Requirements: 1.1_
- _Prompt: Role: TypeScript Developer specializing in type systems and interfaces | Task: Create comprehensive TypeScript interfaces for the feature data structures following requirements 1.1, extending existing base interfaces from src/types/base.ts | Restrictions: Do not modify existing base interfaces, maintain backward compatibility, follow project naming conventions | Success: All interfaces compile without errors, proper inheritance from base types, full type coverage for feature requirements_
- [ ] 2. Create base model class in src/models/FeatureModel.ts
- File: src/models/FeatureModel.ts
- Implement base model extending BaseModel class
- Add validation methods using existing validation utilities
- Purpose: Provide data layer foundation for feature
- _Leverage: src/models/BaseModel.ts, src/utils/validation.ts_
- _Requirements: 2.1_
- _Prompt: Role: Backend Developer with expertise in Node.js and data modeling | Task: Create a base model class extending BaseModel and implementing validation following requirement 2.1, leveraging existing patterns from src/models/BaseModel.ts and src/utils/validation.ts | Restrictions: Must follow existing model patterns, do not bypass validation utilities, maintain consistent error handling | Success: Model extends BaseModel correctly, validation methods implemented and tested, follows project architecture patterns_
- [ ] 3. Add specific model methods to FeatureModel.ts
- File: src/models/FeatureModel.ts (continue from task 2)
- Implement create, update, delete methods
- Add relationship handling for foreign keys
- Purpose: Complete model functionality for CRUD operations
- _Leverage: src/models/BaseModel.ts_
- _Requirements: 2.2, 2.3_
- _Prompt: Role: Backend Developer with expertise in ORM and database operations | Task: Implement CRUD methods and relationship handling in FeatureModel.ts following requirements 2.2 and 2.3, extending patterns from src/models/BaseModel.ts | Restrictions: Must maintain transaction integrity, follow existing relationship patterns, do not duplicate base model functionality | Success: All CRUD operations work correctly, relationships are properly handled, database operations are atomic and efficient_
- [ ] 4. Create model unit tests in tests/models/FeatureModel.test.ts
- File: tests/models/FeatureModel.test.ts
- Write tests for model validation and CRUD methods
- Use existing test utilities and fixtures
- Purpose: Ensure model reliability and catch regressions
- _Leverage: tests/helpers/testUtils.ts, tests/fixtures/data.ts_
- _Requirements: 2.1, 2.2_
- _Prompt: Role: QA Engineer with expertise in unit testing and Jest/Mocha frameworks | Task: Create comprehensive unit tests for FeatureModel validation and CRUD methods covering requirements 2.1 and 2.2, using existing test utilities from tests/helpers/testUtils.ts and fixtures from tests/fixtures/data.ts | Restrictions: Must test both success and failure scenarios, do not test external dependencies directly, maintain test isolation | Success: All model methods are tested with good coverage, edge cases covered, tests run independently and consistently_
- [ ] 5. Create service interface in src/services/IFeatureService.ts
- File: src/services/IFeatureService.ts
- Define service contract with method signatures
- Extend base service interface patterns
- Purpose: Establish service layer contract for dependency injection
- _Leverage: src/services/IBaseService.ts_
- _Requirements: 3.1_
- _Prompt: Role: Software Architect specializing in service-oriented architecture and TypeScript interfaces | Task: Design service interface contract following requirement 3.1, extending base service patterns from src/services/IBaseService.ts for dependency injection | Restrictions: Must maintain interface segregation principle, do not expose internal implementation details, ensure contract compatibility with DI container | Success: Interface is well-defined with clear method signatures, extends base service appropriately, supports all required service operations_
- [ ] 6. Implement feature service in src/services/FeatureService.ts
- File: src/services/FeatureService.ts
- Create concrete service implementation using FeatureModel
- Add error handling with existing error utilities
- Purpose: Provide business logic layer for feature operations
- _Leverage: src/services/BaseService.ts, src/utils/errorHandler.ts, src/models/FeatureModel.ts_
- _Requirements: 3.2_
- _Prompt: Role: Backend Developer with expertise in service layer architecture and business logic | Task: Implement concrete FeatureService following requirement 3.2, using FeatureModel and extending BaseService patterns with proper error handling from src/utils/errorHandler.ts | Restrictions: Must implement interface contract exactly, do not bypass model validation, maintain separation of concerns from data layer | Success: Service implements all interface methods correctly, robust error handling implemented, business logic is well-encapsulated and testable_
- [ ] 7. Add service dependency injection in src/utils/di.ts
- File: src/utils/di.ts (modify existing)
- Register FeatureService in dependency injection container
- Configure service lifetime and dependencies
- Purpose: Enable service injection throughout application
- _Leverage: existing DI configuration in src/utils/di.ts_
- _Requirements: 3.1_
- _Prompt: Role: DevOps Engineer with expertise in dependency injection and IoC containers | Task: Register FeatureService in DI container following requirement 3.1, configuring appropriate lifetime and dependencies using existing patterns from src/utils/di.ts | Restrictions: Must follow existing DI container patterns, do not create circular dependencies, maintain service resolution efficiency | Success: FeatureService is properly registered and resolvable, dependencies are correctly configured, service lifetime is appropriate for use case_
- [ ] 8. Create service unit tests in tests/services/FeatureService.test.ts
- File: tests/services/FeatureService.test.ts
- Write tests for service methods with mocked dependencies
- Test error handling scenarios
- Purpose: Ensure service reliability and proper error handling
- _Leverage: tests/helpers/testUtils.ts, tests/mocks/modelMocks.ts_
- _Requirements: 3.2, 3.3_
- _Prompt: Role: QA Engineer with expertise in service testing and mocking frameworks | Task: Create comprehensive unit tests for FeatureService methods covering requirements 3.2 and 3.3, using mocked dependencies from tests/mocks/modelMocks.ts and test utilities | Restrictions: Must mock all external dependencies, test business logic in isolation, do not test framework code | Success: All service methods tested with proper mocking, error scenarios covered, tests verify business logic correctness and error handling_
- [ ] 4. Create API endpoints
- Design API structure
- _Leverage: src/api/baseApi.ts, src/utils/apiUtils.ts_
- _Requirements: 4.0_
- _Prompt: Role: API Architect specializing in RESTful design and Express.js | Task: Design comprehensive API structure following requirement 4.0, leveraging existing patterns from src/api/baseApi.ts and utilities from src/utils/apiUtils.ts | Restrictions: Must follow REST conventions, maintain API versioning compatibility, do not expose internal data structures directly | Success: API structure is well-designed and documented, follows existing patterns, supports all required operations with proper HTTP methods and status codes_
- [ ] 4.1 Set up routing and middleware
- Configure application routes
- Add authentication middleware
- Set up error handling middleware
- _Leverage: src/middleware/auth.ts, src/middleware/errorHandler.ts_
- _Requirements: 4.1_
- _Prompt: Role: Backend Developer with expertise in Express.js middleware and routing | Task: Configure application routes and middleware following requirement 4.1, integrating authentication from src/middleware/auth.ts and error handling from src/middleware/errorHandler.ts | Restrictions: Must maintain middleware order, do not bypass security middleware, ensure proper error propagation | Success: Routes are properly configured with correct middleware chain, authentication works correctly, errors are handled gracefully throughout the request lifecycle_
- [ ] 4.2 Implement CRUD endpoints
- Create API endpoints
- Add request validation
- Write API integration tests
- _Leverage: src/controllers/BaseController.ts, src/utils/validation.ts_
- _Requirements: 4.2, 4.3_
- _Prompt: Role: Full-stack Developer with expertise in API development and validation | Task: Implement CRUD endpoints following requirements 4.2 and 4.3, extending BaseController patterns and using validation utilities from src/utils/validation.ts | Restrictions: Must validate all inputs, follow existing controller patterns, ensure proper HTTP status codes and responses | Success: All CRUD operations work correctly, request validation prevents invalid data, integration tests pass and cover all endpoints_
- [ ] 5. Add frontend components
- Plan component architecture
- _Leverage: src/components/BaseComponent.tsx, src/styles/theme.ts_
- _Requirements: 5.0_
- _Prompt: Role: Frontend Architect with expertise in React component design and architecture | Task: Plan comprehensive component architecture following requirement 5.0, leveraging base patterns from src/components/BaseComponent.tsx and theme system from src/styles/theme.ts | Restrictions: Must follow existing component patterns, maintain design system consistency, ensure component reusability | Success: Architecture is well-planned and documented, components are properly organized, follows existing patterns and theme system_
- [ ] 5.1 Create base UI components
- Set up component structure
- Implement reusable components
- Add styling and theming
- _Leverage: src/components/BaseComponent.tsx, src/styles/theme.ts_
- _Requirements: 5.1_
- _Prompt: Role: Frontend Developer specializing in React and component architecture | Task: Create reusable UI components following requirement 5.1, extending BaseComponent patterns and using existing theme system from src/styles/theme.ts | Restrictions: Must use existing theme variables, follow component composition patterns, ensure accessibility compliance | Success: Components are reusable and properly themed, follow existing architecture, accessible and responsive_
- [ ] 5.2 Implement feature-specific components
- Create feature components
- Add state management
- Connect to API endpoints
- _Leverage: src/hooks/useApi.ts, src/components/BaseComponent.tsx_
- _Requirements: 5.2, 5.3_
- _Prompt: Role: React Developer with expertise in state management and API integration | Task: Implement feature-specific components following requirements 5.2 and 5.3, using API hooks from src/hooks/useApi.ts and extending BaseComponent patterns | Restrictions: Must use existing state management patterns, handle loading and error states properly, maintain component performance | Success: Components are fully functional with proper state management, API integration works smoothly, user experience is responsive and intuitive_
- [ ] 6. Integration and testing
- Plan integration approach
- _Leverage: src/utils/integrationUtils.ts, tests/helpers/testUtils.ts_
- _Requirements: 6.0_
- _Prompt: Role: Integration Engineer with expertise in system integration and testing strategies | Task: Plan comprehensive integration approach following requirement 6.0, leveraging integration utilities from src/utils/integrationUtils.ts and test helpers | Restrictions: Must consider all system components, ensure proper test coverage, maintain integration test reliability | Success: Integration plan is comprehensive and feasible, all system components work together correctly, integration points are well-tested_
- [ ] 6.1 Write end-to-end tests
- Set up E2E testing framework
- Write user journey tests
- Add test automation
- _Leverage: tests/helpers/testUtils.ts, tests/fixtures/data.ts_
- _Requirements: All_
- _Prompt: Role: QA Automation Engineer with expertise in E2E testing and test frameworks like Cypress or Playwright | Task: Implement comprehensive end-to-end tests covering all requirements, setting up testing framework and user journey tests using test utilities and fixtures | Restrictions: Must test real user workflows, ensure tests are maintainable and reliable, do not test implementation details | Success: E2E tests cover all critical user journeys, tests run reliably in CI/CD pipeline, user experience is validated from end-to-end_
- [ ] 6.2 Final integration and cleanup
- Integrate all components
- Fix any integration issues
- Clean up code and documentation
- _Leverage: src/utils/cleanup.ts, docs/templates/_
- _Requirements: All_
- _Prompt: Role: Senior Developer with expertise in code quality and system integration | Task: Complete final integration of all components and perform comprehensive cleanup covering all requirements, using cleanup utilities and documentation templates | Restrictions: Must not break existing functionality, ensure code quality standards are met, maintain documentation consistency | Success: All components are fully integrated and working together, code is clean and well-documented, system meets all requirements and quality standards_

View File

@@ -0,0 +1,99 @@
# Technology Stack
## Project Type
[Describe what kind of project this is: web application, CLI tool, desktop application, mobile app, library, API service, embedded system, game, etc.]
## Core Technologies
### Primary Language(s)
- **Language**: [e.g., Python 3.11, Go 1.21, TypeScript, Rust, C++]
- **Runtime/Compiler**: [if applicable]
- **Language-specific tools**: [package managers, build tools, etc.]
### Key Dependencies/Libraries
[List the main libraries and frameworks your project depends on]
- **[Library/Framework name]**: [Purpose and version]
- **[Library/Framework name]**: [Purpose and version]
### Application Architecture
[Describe how your application is structured - this could be MVC, event-driven, plugin-based, client-server, standalone, microservices, monolithic, etc.]
### Data Storage (if applicable)
- **Primary storage**: [e.g., PostgreSQL, files, in-memory, cloud storage]
- **Caching**: [e.g., Redis, in-memory, disk cache]
- **Data formats**: [e.g., JSON, Protocol Buffers, XML, binary]
### External Integrations (if applicable)
- **APIs**: [External services you integrate with]
- **Protocols**: [e.g., HTTP/REST, gRPC, WebSocket, TCP/IP]
- **Authentication**: [e.g., OAuth, API keys, certificates]
### Monitoring & Dashboard Technologies (if applicable)
- **Dashboard Framework**: [e.g., React, Vue, vanilla JS, terminal UI]
- **Real-time Communication**: [e.g., WebSocket, Server-Sent Events, polling]
- **Visualization Libraries**: [e.g., Chart.js, D3, terminal graphs]
- **State Management**: [e.g., Redux, Vuex, file system as source of truth]
## Development Environment
### Build & Development Tools
- **Build System**: [e.g., Make, CMake, Gradle, npm scripts, cargo]
- **Package Management**: [e.g., pip, npm, cargo, go mod, apt, brew]
- **Development workflow**: [e.g., hot reload, watch mode, REPL]
### Code Quality Tools
- **Static Analysis**: [Tools for code quality and correctness]
- **Formatting**: [Code style enforcement tools]
- **Testing Framework**: [Unit, integration, and/or end-to-end testing tools]
- **Documentation**: [Documentation generation tools]
### Version Control & Collaboration
- **VCS**: [e.g., Git, Mercurial, SVN]
- **Branching Strategy**: [e.g., Git Flow, GitHub Flow, trunk-based]
- **Code Review Process**: [How code reviews are conducted]
### Dashboard Development (if applicable)
- **Live Reload**: [e.g., Hot module replacement, file watchers]
- **Port Management**: [e.g., Dynamic allocation, configurable ports]
- **Multi-Instance Support**: [e.g., Running multiple dashboards simultaneously]
## Deployment & Distribution (if applicable)
- **Target Platform(s)**: [Where/how the project runs: cloud, on-premise, desktop, mobile, embedded]
- **Distribution Method**: [How users get your software: download, package manager, app store, SaaS]
- **Installation Requirements**: [Prerequisites, system requirements]
- **Update Mechanism**: [How updates are delivered]
## Technical Requirements & Constraints
### Performance Requirements
- [e.g., response time, throughput, memory usage, startup time]
- [Specific benchmarks or targets]
### Compatibility Requirements
- **Platform Support**: [Operating systems, architectures, versions]
- **Dependency Versions**: [Minimum/maximum versions of dependencies]
- **Standards Compliance**: [Industry standards, protocols, specifications]
### Security & Compliance
- **Security Requirements**: [Authentication, encryption, data protection]
- **Compliance Standards**: [GDPR, HIPAA, SOC2, etc. if applicable]
- **Threat Model**: [Key security considerations]
### Scalability & Reliability
- **Expected Load**: [Users, requests, data volume]
- **Availability Requirements**: [Uptime targets, disaster recovery]
- **Growth Projections**: [How the system needs to scale]
## Technical Decisions & Rationale
[Document key architectural and technology choices]
### Decision Log
1. **[Technology/Pattern Choice]**: [Why this was chosen, alternatives considered]
2. **[Architecture Decision]**: [Rationale, trade-offs accepted]
3. **[Tool/Library Selection]**: [Reasoning, evaluation criteria]
## Known Limitations
[Document any technical debt, limitations, or areas for improvement]
- [Limitation 1]: [Impact and potential future solutions]
- [Limitation 2]: [Why it exists and when it might be addressed]

View File

@@ -0,0 +1,64 @@
# User Templates
This directory allows you to create custom templates that override the default Spec Workflow templates.
## How to Use Custom Templates
1. **Create your custom template file** in this directory with the exact same name as the default template you want to override:
- `requirements-template.md` - Override requirements document template
- `design-template.md` - Override design document template
- `tasks-template.md` - Override tasks document template
- `product-template.md` - Override product steering template
- `tech-template.md` - Override tech steering template
- `structure-template.md` - Override structure steering template
2. **Template Loading Priority**:
- The system first checks this `user-templates/` directory
- If a matching template is found here, it will be used
- Otherwise, the default template from `templates/` will be used
## Example Custom Template
To create a custom requirements template:
1. Create a file named `requirements-template.md` in this directory
2. Add your custom structure, for example:
```markdown
# Requirements Document
## Executive Summary
[Your custom section]
## Business Requirements
[Your custom structure]
## Technical Requirements
[Your custom fields]
## Custom Sections
[Add any sections specific to your workflow]
```
## Template Variables
Templates can include placeholders that will be replaced when documents are created:
- `{{projectName}}` - The name of your project
- `{{featureName}}` - The name of the feature being specified
- `{{date}}` - The current date
- `{{author}}` - The document author
## Best Practices
1. **Start from defaults**: Copy a default template from `../templates/` as a starting point
2. **Keep structure consistent**: Maintain similar section headers for tool compatibility
3. **Document changes**: Add comments explaining why sections were added/modified
4. **Version control**: Track your custom templates in version control
5. **Test thoroughly**: Ensure custom templates work with the spec workflow tools
## Notes
- Custom templates are project-specific and not included in the package distribution
- The `templates/` directory contains the default templates which are updated with each version
- Your custom templates in this directory are preserved during updates
- If a custom template has errors, the system will fall back to the default template

View File

@@ -0,0 +1,50 @@
# [PROJECT_NAME] Constitution
<!-- Example: Spec Constitution, TaskFlow Constitution, etc. -->
## Core Principles
### [PRINCIPLE_1_NAME]
<!-- Example: I. Library-First -->
[PRINCIPLE_1_DESCRIPTION]
<!-- Example: Every feature starts as a standalone library; Libraries must be self-contained, independently testable, documented; Clear purpose required - no organizational-only libraries -->
### [PRINCIPLE_2_NAME]
<!-- Example: II. CLI Interface -->
[PRINCIPLE_2_DESCRIPTION]
<!-- Example: Every library exposes functionality via CLI; Text in/out protocol: stdin/args → stdout, errors → stderr; Support JSON + human-readable formats -->
### [PRINCIPLE_3_NAME]
<!-- Example: III. Test-First (NON-NEGOTIABLE) -->
[PRINCIPLE_3_DESCRIPTION]
<!-- Example: TDD mandatory: Tests written → User approved → Tests fail → Then implement; Red-Green-Refactor cycle strictly enforced -->
### [PRINCIPLE_4_NAME]
<!-- Example: IV. Integration Testing -->
[PRINCIPLE_4_DESCRIPTION]
<!-- Example: Focus areas requiring integration tests: New library contract tests, Contract changes, Inter-service communication, Shared schemas -->
### [PRINCIPLE_5_NAME]
<!-- Example: V. Observability, VI. Versioning & Breaking Changes, VII. Simplicity -->
[PRINCIPLE_5_DESCRIPTION]
<!-- Example: Text I/O ensures debuggability; Structured logging required; Or: MAJOR.MINOR.BUILD format; Or: Start simple, YAGNI principles -->
## [SECTION_2_NAME]
<!-- Example: Additional Constraints, Security Requirements, Performance Standards, etc. -->
[SECTION_2_CONTENT]
<!-- Example: Technology stack requirements, compliance standards, deployment policies, etc. -->
## [SECTION_3_NAME]
<!-- Example: Development Workflow, Review Process, Quality Gates, etc. -->
[SECTION_3_CONTENT]
<!-- Example: Code review requirements, testing gates, deployment approval process, etc. -->
## Governance
<!-- Example: Constitution supersedes all other practices; Amendments require documentation, approval, migration plan -->
[GOVERNANCE_RULES]
<!-- Example: All PRs/reviews must verify compliance; Complexity must be justified; Use [GUIDANCE_FILE] for runtime development guidance -->
**Version**: [CONSTITUTION_VERSION] | **Ratified**: [RATIFICATION_DATE] | **Last Amended**: [LAST_AMENDED_DATE]
<!-- Example: Version: 2.1.1 | Ratified: 2025-06-13 | Last Amended: 2025-07-16 -->

View File

@@ -0,0 +1,166 @@
#!/usr/bin/env bash
# Consolidated prerequisite checking script
#
# This script provides unified prerequisite checking for Spec-Driven Development workflow.
# It replaces the functionality previously spread across multiple scripts.
#
# Usage: ./check-prerequisites.sh [OPTIONS]
#
# OPTIONS:
# --json Output in JSON format
# --require-tasks Require tasks.md to exist (for implementation phase)
# --include-tasks Include tasks.md in AVAILABLE_DOCS list
# --paths-only Only output path variables (no validation)
# --help, -h Show help message
#
# OUTPUTS:
# JSON mode: {"FEATURE_DIR":"...", "AVAILABLE_DOCS":["..."]}
# Text mode: FEATURE_DIR:... \n AVAILABLE_DOCS: \n ✓/✗ file.md
# Paths only: REPO_ROOT: ... \n BRANCH: ... \n FEATURE_DIR: ... etc.
set -e
# Parse command line arguments
JSON_MODE=false
REQUIRE_TASKS=false
INCLUDE_TASKS=false
PATHS_ONLY=false
for arg in "$@"; do
case "$arg" in
--json)
JSON_MODE=true
;;
--require-tasks)
REQUIRE_TASKS=true
;;
--include-tasks)
INCLUDE_TASKS=true
;;
--paths-only)
PATHS_ONLY=true
;;
--help|-h)
cat << 'EOF'
Usage: check-prerequisites.sh [OPTIONS]
Consolidated prerequisite checking for Spec-Driven Development workflow.
OPTIONS:
--json Output in JSON format
--require-tasks Require tasks.md to exist (for implementation phase)
--include-tasks Include tasks.md in AVAILABLE_DOCS list
--paths-only Only output path variables (no prerequisite validation)
--help, -h Show this help message
EXAMPLES:
# Check task prerequisites (plan.md required)
./check-prerequisites.sh --json
# Check implementation prerequisites (plan.md + tasks.md required)
./check-prerequisites.sh --json --require-tasks --include-tasks
# Get feature paths only (no validation)
./check-prerequisites.sh --paths-only
EOF
exit 0
;;
*)
echo "ERROR: Unknown option '$arg'. Use --help for usage information." >&2
exit 1
;;
esac
done
# Source common functions
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
source "$SCRIPT_DIR/common.sh"
# Get feature paths and validate branch
eval $(get_feature_paths)
check_feature_branch "$CURRENT_BRANCH" "$HAS_GIT" || exit 1
# If paths-only mode, output paths and exit (support JSON + paths-only combined)
if $PATHS_ONLY; then
if $JSON_MODE; then
# Minimal JSON paths payload (no validation performed)
printf '{"REPO_ROOT":"%s","BRANCH":"%s","FEATURE_DIR":"%s","FEATURE_SPEC":"%s","IMPL_PLAN":"%s","TASKS":"%s"}\n' \
"$REPO_ROOT" "$CURRENT_BRANCH" "$FEATURE_DIR" "$FEATURE_SPEC" "$IMPL_PLAN" "$TASKS"
else
echo "REPO_ROOT: $REPO_ROOT"
echo "BRANCH: $CURRENT_BRANCH"
echo "FEATURE_DIR: $FEATURE_DIR"
echo "FEATURE_SPEC: $FEATURE_SPEC"
echo "IMPL_PLAN: $IMPL_PLAN"
echo "TASKS: $TASKS"
fi
exit 0
fi
# Validate required directories and files
if [[ ! -d "$FEATURE_DIR" ]]; then
echo "ERROR: Feature directory not found: $FEATURE_DIR" >&2
echo "Run /speckit.specify first to create the feature structure." >&2
exit 1
fi
if [[ ! -f "$IMPL_PLAN" ]]; then
echo "ERROR: plan.md not found in $FEATURE_DIR" >&2
echo "Run /speckit.plan first to create the implementation plan." >&2
exit 1
fi
# Check for tasks.md if required
if $REQUIRE_TASKS && [[ ! -f "$TASKS" ]]; then
echo "ERROR: tasks.md not found in $FEATURE_DIR" >&2
echo "Run /speckit.tasks first to create the task list." >&2
exit 1
fi
# Build list of available documents
docs=()
# Always check these optional docs
[[ -f "$RESEARCH" ]] && docs+=("research.md")
[[ -f "$DATA_MODEL" ]] && docs+=("data-model.md")
# Check contracts directory (only if it exists and has files)
if [[ -d "$CONTRACTS_DIR" ]] && [[ -n "$(ls -A "$CONTRACTS_DIR" 2>/dev/null)" ]]; then
docs+=("contracts/")
fi
[[ -f "$QUICKSTART" ]] && docs+=("quickstart.md")
# Include tasks.md if requested and it exists
if $INCLUDE_TASKS && [[ -f "$TASKS" ]]; then
docs+=("tasks.md")
fi
# Output results
if $JSON_MODE; then
# Build JSON array of documents
if [[ ${#docs[@]} -eq 0 ]]; then
json_docs="[]"
else
json_docs=$(printf '"%s",' "${docs[@]}")
json_docs="[${json_docs%,}]"
fi
printf '{"FEATURE_DIR":"%s","AVAILABLE_DOCS":%s}\n' "$FEATURE_DIR" "$json_docs"
else
# Text output
echo "FEATURE_DIR:$FEATURE_DIR"
echo "AVAILABLE_DOCS:"
# Show status of each potential document
check_file "$RESEARCH" "research.md"
check_file "$DATA_MODEL" "data-model.md"
check_dir "$CONTRACTS_DIR" "contracts/"
check_file "$QUICKSTART" "quickstart.md"
if $INCLUDE_TASKS; then
check_file "$TASKS" "tasks.md"
fi
fi

113
.specify/scripts/bash/common.sh Executable file
View File

@@ -0,0 +1,113 @@
#!/usr/bin/env bash
# Common functions and variables for all scripts
# Get repository root, with fallback for non-git repositories
get_repo_root() {
if git rev-parse --show-toplevel >/dev/null 2>&1; then
git rev-parse --show-toplevel
else
# Fall back to script location for non-git repos
local script_dir="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
(cd "$script_dir/../../.." && pwd)
fi
}
# Get current branch, with fallback for non-git repositories
get_current_branch() {
# First check if SPECIFY_FEATURE environment variable is set
if [[ -n "${SPECIFY_FEATURE:-}" ]]; then
echo "$SPECIFY_FEATURE"
return
fi
# Then check git if available
if git rev-parse --abbrev-ref HEAD >/dev/null 2>&1; then
git rev-parse --abbrev-ref HEAD
return
fi
# For non-git repos, try to find the latest feature directory
local repo_root=$(get_repo_root)
local specs_dir="$repo_root/specs"
if [[ -d "$specs_dir" ]]; then
local latest_feature=""
local highest=0
for dir in "$specs_dir"/*; do
if [[ -d "$dir" ]]; then
local dirname=$(basename "$dir")
if [[ "$dirname" =~ ^([0-9]{3})- ]]; then
local number=${BASH_REMATCH[1]}
number=$((10#$number))
if [[ "$number" -gt "$highest" ]]; then
highest=$number
latest_feature=$dirname
fi
fi
fi
done
if [[ -n "$latest_feature" ]]; then
echo "$latest_feature"
return
fi
fi
echo "main" # Final fallback
}
# Check if we have git available
has_git() {
git rev-parse --show-toplevel >/dev/null 2>&1
}
check_feature_branch() {
local branch="$1"
local has_git_repo="$2"
# For non-git repos, we can't enforce branch naming but still provide output
if [[ "$has_git_repo" != "true" ]]; then
echo "[specify] Warning: Git repository not detected; skipped branch validation" >&2
return 0
fi
if [[ ! "$branch" =~ ^[0-9]{3}- ]]; then
echo "ERROR: Not on a feature branch. Current branch: $branch" >&2
echo "Feature branches should be named like: 001-feature-name" >&2
return 1
fi
return 0
}
get_feature_dir() { echo "$1/specs/$2"; }
get_feature_paths() {
local repo_root=$(get_repo_root)
local current_branch=$(get_current_branch)
local has_git_repo="false"
if has_git; then
has_git_repo="true"
fi
local feature_dir=$(get_feature_dir "$repo_root" "$current_branch")
cat <<EOF
REPO_ROOT='$repo_root'
CURRENT_BRANCH='$current_branch'
HAS_GIT='$has_git_repo'
FEATURE_DIR='$feature_dir'
FEATURE_SPEC='$feature_dir/spec.md'
IMPL_PLAN='$feature_dir/plan.md'
TASKS='$feature_dir/tasks.md'
RESEARCH='$feature_dir/research.md'
DATA_MODEL='$feature_dir/data-model.md'
QUICKSTART='$feature_dir/quickstart.md'
CONTRACTS_DIR='$feature_dir/contracts'
EOF
}
check_file() { [[ -f "$1" ]] && echo "$2" || echo "$2"; }
check_dir() { [[ -d "$1" && -n $(ls -A "$1" 2>/dev/null) ]] && echo "$2" || echo "$2"; }

View File

@@ -0,0 +1,97 @@
#!/usr/bin/env bash
set -e
JSON_MODE=false
ARGS=()
for arg in "$@"; do
case "$arg" in
--json) JSON_MODE=true ;;
--help|-h) echo "Usage: $0 [--json] <feature_description>"; exit 0 ;;
*) ARGS+=("$arg") ;;
esac
done
FEATURE_DESCRIPTION="${ARGS[*]}"
if [ -z "$FEATURE_DESCRIPTION" ]; then
echo "Usage: $0 [--json] <feature_description>" >&2
exit 1
fi
# Function to find the repository root by searching for existing project markers
find_repo_root() {
local dir="$1"
while [ "$dir" != "/" ]; do
if [ -d "$dir/.git" ] || [ -d "$dir/.specify" ]; then
echo "$dir"
return 0
fi
dir="$(dirname "$dir")"
done
return 1
}
# Resolve repository root. Prefer git information when available, but fall back
# to searching for repository markers so the workflow still functions in repositories that
# were initialised with --no-git.
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
if git rev-parse --show-toplevel >/dev/null 2>&1; then
REPO_ROOT=$(git rev-parse --show-toplevel)
HAS_GIT=true
else
REPO_ROOT="$(find_repo_root "$SCRIPT_DIR")"
if [ -z "$REPO_ROOT" ]; then
echo "Error: Could not determine repository root. Please run this script from within the repository." >&2
exit 1
fi
HAS_GIT=false
fi
cd "$REPO_ROOT"
SPECS_DIR="$REPO_ROOT/specs"
mkdir -p "$SPECS_DIR"
HIGHEST=0
if [ -d "$SPECS_DIR" ]; then
for dir in "$SPECS_DIR"/*; do
[ -d "$dir" ] || continue
dirname=$(basename "$dir")
number=$(echo "$dirname" | grep -o '^[0-9]\+' || echo "0")
number=$((10#$number))
if [ "$number" -gt "$HIGHEST" ]; then HIGHEST=$number; fi
done
fi
NEXT=$((HIGHEST + 1))
FEATURE_NUM=$(printf "%03d" "$NEXT")
BRANCH_NAME=$(echo "$FEATURE_DESCRIPTION" | tr '[:upper:]' '[:lower:]' | sed 's/[^a-z0-9]/-/g' | sed 's/-\+/-/g' | sed 's/^-//' | sed 's/-$//')
WORDS=$(echo "$BRANCH_NAME" | tr '-' '\n' | grep -v '^$' | head -3 | tr '\n' '-' | sed 's/-$//')
BRANCH_NAME="${FEATURE_NUM}-${WORDS}"
if [ "$HAS_GIT" = true ]; then
git checkout -b "$BRANCH_NAME"
else
>&2 echo "[specify] Warning: Git repository not detected; skipped branch creation for $BRANCH_NAME"
fi
FEATURE_DIR="$SPECS_DIR/$BRANCH_NAME"
mkdir -p "$FEATURE_DIR"
TEMPLATE="$REPO_ROOT/.specify/templates/spec-template.md"
SPEC_FILE="$FEATURE_DIR/spec.md"
if [ -f "$TEMPLATE" ]; then cp "$TEMPLATE" "$SPEC_FILE"; else touch "$SPEC_FILE"; fi
# Set the SPECIFY_FEATURE environment variable for the current session
export SPECIFY_FEATURE="$BRANCH_NAME"
if $JSON_MODE; then
printf '{"BRANCH_NAME":"%s","SPEC_FILE":"%s","FEATURE_NUM":"%s"}\n' "$BRANCH_NAME" "$SPEC_FILE" "$FEATURE_NUM"
else
echo "BRANCH_NAME: $BRANCH_NAME"
echo "SPEC_FILE: $SPEC_FILE"
echo "FEATURE_NUM: $FEATURE_NUM"
echo "SPECIFY_FEATURE environment variable set to: $BRANCH_NAME"
fi

View File

@@ -0,0 +1,60 @@
#!/usr/bin/env bash
set -e
# Parse command line arguments
JSON_MODE=false
ARGS=()
for arg in "$@"; do
case "$arg" in
--json)
JSON_MODE=true
;;
--help|-h)
echo "Usage: $0 [--json]"
echo " --json Output results in JSON format"
echo " --help Show this help message"
exit 0
;;
*)
ARGS+=("$arg")
;;
esac
done
# Get script directory and load common functions
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
source "$SCRIPT_DIR/common.sh"
# Get all paths and variables from common functions
eval $(get_feature_paths)
# Check if we're on a proper feature branch (only for git repos)
check_feature_branch "$CURRENT_BRANCH" "$HAS_GIT" || exit 1
# Ensure the feature directory exists
mkdir -p "$FEATURE_DIR"
# Copy plan template if it exists
TEMPLATE="$REPO_ROOT/.specify/templates/plan-template.md"
if [[ -f "$TEMPLATE" ]]; then
cp "$TEMPLATE" "$IMPL_PLAN"
echo "Copied plan template to $IMPL_PLAN"
else
echo "Warning: Plan template not found at $TEMPLATE"
# Create a basic plan file if template doesn't exist
touch "$IMPL_PLAN"
fi
# Output results
if $JSON_MODE; then
printf '{"FEATURE_SPEC":"%s","IMPL_PLAN":"%s","SPECS_DIR":"%s","BRANCH":"%s","HAS_GIT":"%s"}\n' \
"$FEATURE_SPEC" "$IMPL_PLAN" "$FEATURE_DIR" "$CURRENT_BRANCH" "$HAS_GIT"
else
echo "FEATURE_SPEC: $FEATURE_SPEC"
echo "IMPL_PLAN: $IMPL_PLAN"
echo "SPECS_DIR: $FEATURE_DIR"
echo "BRANCH: $CURRENT_BRANCH"
echo "HAS_GIT: $HAS_GIT"
fi

View File

@@ -0,0 +1,728 @@
#!/usr/bin/env bash
# Update agent context files with information from plan.md
#
# This script maintains AI agent context files by parsing feature specifications
# and updating agent-specific configuration files with project information.
#
# MAIN FUNCTIONS:
# 1. Environment Validation
# - Verifies git repository structure and branch information
# - Checks for required plan.md files and templates
# - Validates file permissions and accessibility
#
# 2. Plan Data Extraction
# - Parses plan.md files to extract project metadata
# - Identifies language/version, frameworks, databases, and project types
# - Handles missing or incomplete specification data gracefully
#
# 3. Agent File Management
# - Creates new agent context files from templates when needed
# - Updates existing agent files with new project information
# - Preserves manual additions and custom configurations
# - Supports multiple AI agent formats and directory structures
#
# 4. Content Generation
# - Generates language-specific build/test commands
# - Creates appropriate project directory structures
# - Updates technology stacks and recent changes sections
# - Maintains consistent formatting and timestamps
#
# 5. Multi-Agent Support
# - Handles agent-specific file paths and naming conventions
# - Supports: Claude, Gemini, Copilot, Cursor, Qwen, opencode, Codex, Windsurf, Kilo Code, Auggie CLI, or Amazon Q Developer CLI
# - Can update single agents or all existing agent files
# - Creates default Claude file if no agent files exist
#
# Usage: ./update-agent-context.sh [agent_type]
# Agent types: claude|gemini|copilot|cursor|qwen|opencode|codex|windsurf|kilocode|auggie|q
# Leave empty to update all existing agent files
set -e
# Enable strict error handling
set -u
set -o pipefail
#==============================================================================
# Configuration and Global Variables
#==============================================================================
# Get script directory and load common functions
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
source "$SCRIPT_DIR/common.sh"
# Get all paths and variables from common functions
eval $(get_feature_paths)
NEW_PLAN="$IMPL_PLAN" # Alias for compatibility with existing code
AGENT_TYPE="${1:-}"
# Agent-specific file paths
CLAUDE_FILE="$REPO_ROOT/CLAUDE.md"
GEMINI_FILE="$REPO_ROOT/GEMINI.md"
COPILOT_FILE="$REPO_ROOT/.github/copilot-instructions.md"
CURSOR_FILE="$REPO_ROOT/.cursor/rules/specify-rules.mdc"
QWEN_FILE="$REPO_ROOT/QWEN.md"
AGENTS_FILE="$REPO_ROOT/AGENTS.md"
WINDSURF_FILE="$REPO_ROOT/.windsurf/rules/specify-rules.md"
KILOCODE_FILE="$REPO_ROOT/.kilocode/rules/specify-rules.md"
AUGGIE_FILE="$REPO_ROOT/.augment/rules/specify-rules.md"
ROO_FILE="$REPO_ROOT/.roo/rules/specify-rules.md"
Q_FILE="$REPO_ROOT/AGENTS.md"
# Template file
TEMPLATE_FILE="$REPO_ROOT/.specify/templates/agent-file-template.md"
# Global variables for parsed plan data
NEW_LANG=""
NEW_FRAMEWORK=""
NEW_DB=""
NEW_PROJECT_TYPE=""
#==============================================================================
# Utility Functions
#==============================================================================
log_info() {
echo "INFO: $1"
}
log_success() {
echo "$1"
}
log_error() {
echo "ERROR: $1" >&2
}
log_warning() {
echo "WARNING: $1" >&2
}
# Cleanup function for temporary files
cleanup() {
local exit_code=$?
rm -f /tmp/agent_update_*_$$
rm -f /tmp/manual_additions_$$
exit $exit_code
}
# Set up cleanup trap
trap cleanup EXIT INT TERM
#==============================================================================
# Validation Functions
#==============================================================================
validate_environment() {
# Check if we have a current branch/feature (git or non-git)
if [[ -z "$CURRENT_BRANCH" ]]; then
log_error "Unable to determine current feature"
if [[ "$HAS_GIT" == "true" ]]; then
log_info "Make sure you're on a feature branch"
else
log_info "Set SPECIFY_FEATURE environment variable or create a feature first"
fi
exit 1
fi
# Check if plan.md exists
if [[ ! -f "$NEW_PLAN" ]]; then
log_error "No plan.md found at $NEW_PLAN"
log_info "Make sure you're working on a feature with a corresponding spec directory"
if [[ "$HAS_GIT" != "true" ]]; then
log_info "Use: export SPECIFY_FEATURE=your-feature-name or create a new feature first"
fi
exit 1
fi
# Check if template exists (needed for new files)
if [[ ! -f "$TEMPLATE_FILE" ]]; then
log_warning "Template file not found at $TEMPLATE_FILE"
log_warning "Creating new agent files will fail"
fi
}
#==============================================================================
# Plan Parsing Functions
#==============================================================================
extract_plan_field() {
local field_pattern="$1"
local plan_file="$2"
grep "^\*\*${field_pattern}\*\*: " "$plan_file" 2>/dev/null | \
head -1 | \
sed "s|^\*\*${field_pattern}\*\*: ||" | \
sed 's/^[ \t]*//;s/[ \t]*$//' | \
grep -v "NEEDS CLARIFICATION" | \
grep -v "^N/A$" || echo ""
}
parse_plan_data() {
local plan_file="$1"
if [[ ! -f "$plan_file" ]]; then
log_error "Plan file not found: $plan_file"
return 1
fi
if [[ ! -r "$plan_file" ]]; then
log_error "Plan file is not readable: $plan_file"
return 1
fi
log_info "Parsing plan data from $plan_file"
NEW_LANG=$(extract_plan_field "Language/Version" "$plan_file")
NEW_FRAMEWORK=$(extract_plan_field "Primary Dependencies" "$plan_file")
NEW_DB=$(extract_plan_field "Storage" "$plan_file")
NEW_PROJECT_TYPE=$(extract_plan_field "Project Type" "$plan_file")
# Log what we found
if [[ -n "$NEW_LANG" ]]; then
log_info "Found language: $NEW_LANG"
else
log_warning "No language information found in plan"
fi
if [[ -n "$NEW_FRAMEWORK" ]]; then
log_info "Found framework: $NEW_FRAMEWORK"
fi
if [[ -n "$NEW_DB" ]] && [[ "$NEW_DB" != "N/A" ]]; then
log_info "Found database: $NEW_DB"
fi
if [[ -n "$NEW_PROJECT_TYPE" ]]; then
log_info "Found project type: $NEW_PROJECT_TYPE"
fi
}
format_technology_stack() {
local lang="$1"
local framework="$2"
local parts=()
# Add non-empty parts
[[ -n "$lang" && "$lang" != "NEEDS CLARIFICATION" ]] && parts+=("$lang")
[[ -n "$framework" && "$framework" != "NEEDS CLARIFICATION" && "$framework" != "N/A" ]] && parts+=("$framework")
# Join with proper formatting
if [[ ${#parts[@]} -eq 0 ]]; then
echo ""
elif [[ ${#parts[@]} -eq 1 ]]; then
echo "${parts[0]}"
else
# Join multiple parts with " + "
local result="${parts[0]}"
for ((i=1; i<${#parts[@]}; i++)); do
result="$result + ${parts[i]}"
done
echo "$result"
fi
}
#==============================================================================
# Template and Content Generation Functions
#==============================================================================
get_project_structure() {
local project_type="$1"
if [[ "$project_type" == *"web"* ]]; then
echo "backend/\\nfrontend/\\ntests/"
else
echo "src/\\ntests/"
fi
}
get_commands_for_language() {
local lang="$1"
case "$lang" in
*"Python"*)
echo "cd src && pytest && ruff check ."
;;
*"Rust"*)
echo "cargo test && cargo clippy"
;;
*"JavaScript"*|*"TypeScript"*)
echo "npm test && npm run lint"
;;
*)
echo "# Add commands for $lang"
;;
esac
}
get_language_conventions() {
local lang="$1"
echo "$lang: Follow standard conventions"
}
create_new_agent_file() {
local target_file="$1"
local temp_file="$2"
local project_name="$3"
local current_date="$4"
if [[ ! -f "$TEMPLATE_FILE" ]]; then
log_error "Template not found at $TEMPLATE_FILE"
return 1
fi
if [[ ! -r "$TEMPLATE_FILE" ]]; then
log_error "Template file is not readable: $TEMPLATE_FILE"
return 1
fi
log_info "Creating new agent context file from template..."
if ! cp "$TEMPLATE_FILE" "$temp_file"; then
log_error "Failed to copy template file"
return 1
fi
# Replace template placeholders
local project_structure
project_structure=$(get_project_structure "$NEW_PROJECT_TYPE")
local commands
commands=$(get_commands_for_language "$NEW_LANG")
local language_conventions
language_conventions=$(get_language_conventions "$NEW_LANG")
# Perform substitutions with error checking using safer approach
# Escape special characters for sed by using a different delimiter or escaping
local escaped_lang=$(printf '%s\n' "$NEW_LANG" | sed 's/[\[\.*^$()+{}|]/\\&/g')
local escaped_framework=$(printf '%s\n' "$NEW_FRAMEWORK" | sed 's/[\[\.*^$()+{}|]/\\&/g')
local escaped_branch=$(printf '%s\n' "$CURRENT_BRANCH" | sed 's/[\[\.*^$()+{}|]/\\&/g')
# Build technology stack and recent change strings conditionally
local tech_stack
if [[ -n "$escaped_lang" && -n "$escaped_framework" ]]; then
tech_stack="- $escaped_lang + $escaped_framework ($escaped_branch)"
elif [[ -n "$escaped_lang" ]]; then
tech_stack="- $escaped_lang ($escaped_branch)"
elif [[ -n "$escaped_framework" ]]; then
tech_stack="- $escaped_framework ($escaped_branch)"
else
tech_stack="- ($escaped_branch)"
fi
local recent_change
if [[ -n "$escaped_lang" && -n "$escaped_framework" ]]; then
recent_change="- $escaped_branch: Added $escaped_lang + $escaped_framework"
elif [[ -n "$escaped_lang" ]]; then
recent_change="- $escaped_branch: Added $escaped_lang"
elif [[ -n "$escaped_framework" ]]; then
recent_change="- $escaped_branch: Added $escaped_framework"
else
recent_change="- $escaped_branch: Added"
fi
local substitutions=(
"s|\[PROJECT NAME\]|$project_name|"
"s|\[DATE\]|$current_date|"
"s|\[EXTRACTED FROM ALL PLAN.MD FILES\]|$tech_stack|"
"s|\[ACTUAL STRUCTURE FROM PLANS\]|$project_structure|g"
"s|\[ONLY COMMANDS FOR ACTIVE TECHNOLOGIES\]|$commands|"
"s|\[LANGUAGE-SPECIFIC, ONLY FOR LANGUAGES IN USE\]|$language_conventions|"
"s|\[LAST 3 FEATURES AND WHAT THEY ADDED\]|$recent_change|"
)
for substitution in "${substitutions[@]}"; do
if ! sed -i.bak -e "$substitution" "$temp_file"; then
log_error "Failed to perform substitution: $substitution"
rm -f "$temp_file" "$temp_file.bak"
return 1
fi
done
# Convert \n sequences to actual newlines
newline=$(printf '\n')
sed -i.bak2 "s/\\\\n/${newline}/g" "$temp_file"
# Clean up backup files
rm -f "$temp_file.bak" "$temp_file.bak2"
return 0
}
update_existing_agent_file() {
local target_file="$1"
local current_date="$2"
log_info "Updating existing agent context file..."
# Use a single temporary file for atomic update
local temp_file
temp_file=$(mktemp) || {
log_error "Failed to create temporary file"
return 1
}
# Process the file in one pass
local tech_stack=$(format_technology_stack "$NEW_LANG" "$NEW_FRAMEWORK")
local new_tech_entries=()
local new_change_entry=""
# Prepare new technology entries
if [[ -n "$tech_stack" ]] && ! grep -q "$tech_stack" "$target_file"; then
new_tech_entries+=("- $tech_stack ($CURRENT_BRANCH)")
fi
if [[ -n "$NEW_DB" ]] && [[ "$NEW_DB" != "N/A" ]] && [[ "$NEW_DB" != "NEEDS CLARIFICATION" ]] && ! grep -q "$NEW_DB" "$target_file"; then
new_tech_entries+=("- $NEW_DB ($CURRENT_BRANCH)")
fi
# Prepare new change entry
if [[ -n "$tech_stack" ]]; then
new_change_entry="- $CURRENT_BRANCH: Added $tech_stack"
elif [[ -n "$NEW_DB" ]] && [[ "$NEW_DB" != "N/A" ]] && [[ "$NEW_DB" != "NEEDS CLARIFICATION" ]]; then
new_change_entry="- $CURRENT_BRANCH: Added $NEW_DB"
fi
# Process file line by line
local in_tech_section=false
local in_changes_section=false
local tech_entries_added=false
local changes_entries_added=false
local existing_changes_count=0
while IFS= read -r line || [[ -n "$line" ]]; do
# Handle Active Technologies section
if [[ "$line" == "## Active Technologies" ]]; then
echo "$line" >> "$temp_file"
in_tech_section=true
continue
elif [[ $in_tech_section == true ]] && [[ "$line" =~ ^##[[:space:]] ]]; then
# Add new tech entries before closing the section
if [[ $tech_entries_added == false ]] && [[ ${#new_tech_entries[@]} -gt 0 ]]; then
printf '%s\n' "${new_tech_entries[@]}" >> "$temp_file"
tech_entries_added=true
fi
echo "$line" >> "$temp_file"
in_tech_section=false
continue
elif [[ $in_tech_section == true ]] && [[ -z "$line" ]]; then
# Add new tech entries before empty line in tech section
if [[ $tech_entries_added == false ]] && [[ ${#new_tech_entries[@]} -gt 0 ]]; then
printf '%s\n' "${new_tech_entries[@]}" >> "$temp_file"
tech_entries_added=true
fi
echo "$line" >> "$temp_file"
continue
fi
# Handle Recent Changes section
if [[ "$line" == "## Recent Changes" ]]; then
echo "$line" >> "$temp_file"
# Add new change entry right after the heading
if [[ -n "$new_change_entry" ]]; then
echo "$new_change_entry" >> "$temp_file"
fi
in_changes_section=true
changes_entries_added=true
continue
elif [[ $in_changes_section == true ]] && [[ "$line" =~ ^##[[:space:]] ]]; then
echo "$line" >> "$temp_file"
in_changes_section=false
continue
elif [[ $in_changes_section == true ]] && [[ "$line" == "- "* ]]; then
# Keep only first 2 existing changes
if [[ $existing_changes_count -lt 2 ]]; then
echo "$line" >> "$temp_file"
((existing_changes_count++))
fi
continue
fi
# Update timestamp
if [[ "$line" =~ \*\*Last\ updated\*\*:.*[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9] ]]; then
echo "$line" | sed "s/[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]/$current_date/" >> "$temp_file"
else
echo "$line" >> "$temp_file"
fi
done < "$target_file"
# Post-loop check: if we're still in the Active Technologies section and haven't added new entries
if [[ $in_tech_section == true ]] && [[ $tech_entries_added == false ]] && [[ ${#new_tech_entries[@]} -gt 0 ]]; then
printf '%s\n' "${new_tech_entries[@]}" >> "$temp_file"
fi
# Move temp file to target atomically
if ! mv "$temp_file" "$target_file"; then
log_error "Failed to update target file"
rm -f "$temp_file"
return 1
fi
return 0
}
#==============================================================================
# Main Agent File Update Function
#==============================================================================
update_agent_file() {
local target_file="$1"
local agent_name="$2"
if [[ -z "$target_file" ]] || [[ -z "$agent_name" ]]; then
log_error "update_agent_file requires target_file and agent_name parameters"
return 1
fi
log_info "Updating $agent_name context file: $target_file"
local project_name
project_name=$(basename "$REPO_ROOT")
local current_date
current_date=$(date +%Y-%m-%d)
# Create directory if it doesn't exist
local target_dir
target_dir=$(dirname "$target_file")
if [[ ! -d "$target_dir" ]]; then
if ! mkdir -p "$target_dir"; then
log_error "Failed to create directory: $target_dir"
return 1
fi
fi
if [[ ! -f "$target_file" ]]; then
# Create new file from template
local temp_file
temp_file=$(mktemp) || {
log_error "Failed to create temporary file"
return 1
}
if create_new_agent_file "$target_file" "$temp_file" "$project_name" "$current_date"; then
if mv "$temp_file" "$target_file"; then
log_success "Created new $agent_name context file"
else
log_error "Failed to move temporary file to $target_file"
rm -f "$temp_file"
return 1
fi
else
log_error "Failed to create new agent file"
rm -f "$temp_file"
return 1
fi
else
# Update existing file
if [[ ! -r "$target_file" ]]; then
log_error "Cannot read existing file: $target_file"
return 1
fi
if [[ ! -w "$target_file" ]]; then
log_error "Cannot write to existing file: $target_file"
return 1
fi
if update_existing_agent_file "$target_file" "$current_date"; then
log_success "Updated existing $agent_name context file"
else
log_error "Failed to update existing agent file"
return 1
fi
fi
return 0
}
#==============================================================================
# Agent Selection and Processing
#==============================================================================
update_specific_agent() {
local agent_type="$1"
case "$agent_type" in
claude)
update_agent_file "$CLAUDE_FILE" "Claude Code"
;;
gemini)
update_agent_file "$GEMINI_FILE" "Gemini CLI"
;;
copilot)
update_agent_file "$COPILOT_FILE" "GitHub Copilot"
;;
cursor)
update_agent_file "$CURSOR_FILE" "Cursor IDE"
;;
qwen)
update_agent_file "$QWEN_FILE" "Qwen Code"
;;
opencode)
update_agent_file "$AGENTS_FILE" "opencode"
;;
codex)
update_agent_file "$AGENTS_FILE" "Codex CLI"
;;
windsurf)
update_agent_file "$WINDSURF_FILE" "Windsurf"
;;
kilocode)
update_agent_file "$KILOCODE_FILE" "Kilo Code"
;;
auggie)
update_agent_file "$AUGGIE_FILE" "Auggie CLI"
;;
roo)
update_agent_file "$ROO_FILE" "Roo Code"
;;
q)
update_agent_file "$Q_FILE" "Amazon Q Developer CLI"
;;
*)
log_error "Unknown agent type '$agent_type'"
log_error "Expected: claude|gemini|copilot|cursor|qwen|opencode|codex|windsurf|kilocode|auggie|roo|q"
exit 1
;;
esac
}
update_all_existing_agents() {
local found_agent=false
# Check each possible agent file and update if it exists
if [[ -f "$CLAUDE_FILE" ]]; then
update_agent_file "$CLAUDE_FILE" "Claude Code"
found_agent=true
fi
if [[ -f "$GEMINI_FILE" ]]; then
update_agent_file "$GEMINI_FILE" "Gemini CLI"
found_agent=true
fi
if [[ -f "$COPILOT_FILE" ]]; then
update_agent_file "$COPILOT_FILE" "GitHub Copilot"
found_agent=true
fi
if [[ -f "$CURSOR_FILE" ]]; then
update_agent_file "$CURSOR_FILE" "Cursor IDE"
found_agent=true
fi
if [[ -f "$QWEN_FILE" ]]; then
update_agent_file "$QWEN_FILE" "Qwen Code"
found_agent=true
fi
if [[ -f "$AGENTS_FILE" ]]; then
update_agent_file "$AGENTS_FILE" "Codex/opencode"
found_agent=true
fi
if [[ -f "$WINDSURF_FILE" ]]; then
update_agent_file "$WINDSURF_FILE" "Windsurf"
found_agent=true
fi
if [[ -f "$KILOCODE_FILE" ]]; then
update_agent_file "$KILOCODE_FILE" "Kilo Code"
found_agent=true
fi
if [[ -f "$AUGGIE_FILE" ]]; then
update_agent_file "$AUGGIE_FILE" "Auggie CLI"
found_agent=true
fi
if [[ -f "$ROO_FILE" ]]; then
update_agent_file "$ROO_FILE" "Roo Code"
found_agent=true
fi
if [[ -f "$Q_FILE" ]]; then
update_agent_file "$Q_FILE" "Amazon Q Developer CLI"
found_agent=true
fi
# If no agent files exist, create a default Claude file
if [[ "$found_agent" == false ]]; then
log_info "No existing agent files found, creating default Claude file..."
update_agent_file "$CLAUDE_FILE" "Claude Code"
fi
}
print_summary() {
echo
log_info "Summary of changes:"
if [[ -n "$NEW_LANG" ]]; then
echo " - Added language: $NEW_LANG"
fi
if [[ -n "$NEW_FRAMEWORK" ]]; then
echo " - Added framework: $NEW_FRAMEWORK"
fi
if [[ -n "$NEW_DB" ]] && [[ "$NEW_DB" != "N/A" ]]; then
echo " - Added database: $NEW_DB"
fi
echo
log_info "Usage: $0 [claude|gemini|copilot|cursor|qwen|opencode|codex|windsurf|kilocode|auggie|q]"
}
#==============================================================================
# Main Execution
#==============================================================================
main() {
# Validate environment before proceeding
validate_environment
log_info "=== Updating agent context files for feature $CURRENT_BRANCH ==="
# Parse the plan file to extract project information
if ! parse_plan_data "$NEW_PLAN"; then
log_error "Failed to parse plan data"
exit 1
fi
# Process based on agent type argument
local success=true
if [[ -z "$AGENT_TYPE" ]]; then
# No specific agent provided - update all existing agent files
log_info "No agent specified, updating all existing agent files..."
if ! update_all_existing_agents; then
success=false
fi
else
# Specific agent provided - update only that agent
log_info "Updating specific agent: $AGENT_TYPE"
if ! update_specific_agent "$AGENT_TYPE"; then
success=false
fi
fi
# Print summary
print_summary
if [[ "$success" == true ]]; then
log_success "Agent context update completed successfully"
exit 0
else
log_error "Agent context update completed with errors"
exit 1
fi
}
# Execute main function if script is run directly
if [[ "${BASH_SOURCE[0]}" == "${0}" ]]; then
main "$@"
fi

View File

@@ -0,0 +1,23 @@
# [PROJECT NAME] Development Guidelines
Auto-generated from all feature plans. Last updated: [DATE]
## Active Technologies
[EXTRACTED FROM ALL PLAN.MD FILES]
## Project Structure
```
[ACTUAL STRUCTURE FROM PLANS]
```
## Commands
[ONLY COMMANDS FOR ACTIVE TECHNOLOGIES]
## Code Style
[LANGUAGE-SPECIFIC, ONLY FOR LANGUAGES IN USE]
## Recent Changes
[LAST 3 FEATURES AND WHAT THEY ADDED]
<!-- MANUAL ADDITIONS START -->
<!-- MANUAL ADDITIONS END -->

View File

@@ -0,0 +1,40 @@
# [CHECKLIST TYPE] Checklist: [FEATURE NAME]
**Purpose**: [Brief description of what this checklist covers]
**Created**: [DATE]
**Feature**: [Link to spec.md or relevant documentation]
**Note**: This checklist is generated by the `/speckit.checklist` command based on feature context and requirements.
<!--
============================================================================
IMPORTANT: The checklist items below are SAMPLE ITEMS for illustration only.
The /speckit.checklist command MUST replace these with actual items based on:
- User's specific checklist request
- Feature requirements from spec.md
- Technical context from plan.md
- Implementation details from tasks.md
DO NOT keep these sample items in the generated checklist file.
============================================================================
-->
## [Category 1]
- [ ] CHK001 First checklist item with clear action
- [ ] CHK002 Second checklist item
- [ ] CHK003 Third checklist item
## [Category 2]
- [ ] CHK004 Another category item
- [ ] CHK005 Item with specific criteria
- [ ] CHK006 Final item in this category
## Notes
- Check items off as completed: `[x]`
- Add comments or findings inline
- Link to relevant resources or documentation
- Items are numbered sequentially for easy reference

View File

@@ -0,0 +1,104 @@
# Implementation Plan: [FEATURE]
**Branch**: `[###-feature-name]` | **Date**: [DATE] | **Spec**: [link]
**Input**: Feature specification from `/specs/[###-feature-name]/spec.md`
**Note**: This template is filled in by the `/speckit.plan` command. See `.specify/templates/commands/plan.md` for the execution workflow.
## Summary
[Extract from feature spec: primary requirement + technical approach from research]
## Technical Context
<!--
ACTION REQUIRED: Replace the content in this section with the technical details
for the project. The structure here is presented in advisory capacity to guide
the iteration process.
-->
**Language/Version**: [e.g., Python 3.11, Swift 5.9, Rust 1.75 or NEEDS CLARIFICATION]
**Primary Dependencies**: [e.g., FastAPI, UIKit, LLVM or NEEDS CLARIFICATION]
**Storage**: [if applicable, e.g., PostgreSQL, CoreData, files or N/A]
**Testing**: [e.g., pytest, XCTest, cargo test or NEEDS CLARIFICATION]
**Target Platform**: [e.g., Linux server, iOS 15+, WASM or NEEDS CLARIFICATION]
**Project Type**: [single/web/mobile - determines source structure]
**Performance Goals**: [domain-specific, e.g., 1000 req/s, 10k lines/sec, 60 fps or NEEDS CLARIFICATION]
**Constraints**: [domain-specific, e.g., <200ms p95, <100MB memory, offline-capable or NEEDS CLARIFICATION]
**Scale/Scope**: [domain-specific, e.g., 10k users, 1M LOC, 50 screens or NEEDS CLARIFICATION]
## Constitution Check
*GATE: Must pass before Phase 0 research. Re-check after Phase 1 design.*
[Gates determined based on constitution file]
## Project Structure
### Documentation (this feature)
```
specs/[###-feature]/
├── plan.md # This file (/speckit.plan command output)
├── research.md # Phase 0 output (/speckit.plan command)
├── data-model.md # Phase 1 output (/speckit.plan command)
├── quickstart.md # Phase 1 output (/speckit.plan command)
├── contracts/ # Phase 1 output (/speckit.plan command)
└── tasks.md # Phase 2 output (/speckit.tasks command - NOT created by /speckit.plan)
```
### Source Code (repository root)
<!--
ACTION REQUIRED: Replace the placeholder tree below with the concrete layout
for this feature. Delete unused options and expand the chosen structure with
real paths (e.g., apps/admin, packages/something). The delivered plan must
not include Option labels.
-->
```
# [REMOVE IF UNUSED] Option 1: Single project (DEFAULT)
src/
├── models/
├── services/
├── cli/
└── lib/
tests/
├── contract/
├── integration/
└── unit/
# [REMOVE IF UNUSED] Option 2: Web application (when "frontend" + "backend" detected)
backend/
├── src/
│ ├── models/
│ ├── services/
│ └── api/
└── tests/
frontend/
├── src/
│ ├── components/
│ ├── pages/
│ └── services/
└── tests/
# [REMOVE IF UNUSED] Option 3: Mobile + API (when "iOS/Android" detected)
api/
└── [same as backend above]
ios/ or android/
└── [platform-specific structure: feature modules, UI flows, platform tests]
```
**Structure Decision**: [Document the selected structure and reference the real
directories captured above]
## Complexity Tracking
*Fill ONLY if Constitution Check has violations that must be justified*
| Violation | Why Needed | Simpler Alternative Rejected Because |
|-----------|------------|-------------------------------------|
| [e.g., 4th project] | [current need] | [why 3 projects insufficient] |
| [e.g., Repository pattern] | [specific problem] | [why direct DB access insufficient] |

View File

@@ -0,0 +1,115 @@
# Feature Specification: [FEATURE NAME]
**Feature Branch**: `[###-feature-name]`
**Created**: [DATE]
**Status**: Draft
**Input**: User description: "$ARGUMENTS"
## User Scenarios & Testing *(mandatory)*
<!--
IMPORTANT: User stories should be PRIORITIZED as user journeys ordered by importance.
Each user story/journey must be INDEPENDENTLY TESTABLE - meaning if you implement just ONE of them,
you should still have a viable MVP (Minimum Viable Product) that delivers value.
Assign priorities (P1, P2, P3, etc.) to each story, where P1 is the most critical.
Think of each story as a standalone slice of functionality that can be:
- Developed independently
- Tested independently
- Deployed independently
- Demonstrated to users independently
-->
### User Story 1 - [Brief Title] (Priority: P1)
[Describe this user journey in plain language]
**Why this priority**: [Explain the value and why it has this priority level]
**Independent Test**: [Describe how this can be tested independently - e.g., "Can be fully tested by [specific action] and delivers [specific value]"]
**Acceptance Scenarios**:
1. **Given** [initial state], **When** [action], **Then** [expected outcome]
2. **Given** [initial state], **When** [action], **Then** [expected outcome]
---
### User Story 2 - [Brief Title] (Priority: P2)
[Describe this user journey in plain language]
**Why this priority**: [Explain the value and why it has this priority level]
**Independent Test**: [Describe how this can be tested independently]
**Acceptance Scenarios**:
1. **Given** [initial state], **When** [action], **Then** [expected outcome]
---
### User Story 3 - [Brief Title] (Priority: P3)
[Describe this user journey in plain language]
**Why this priority**: [Explain the value and why it has this priority level]
**Independent Test**: [Describe how this can be tested independently]
**Acceptance Scenarios**:
1. **Given** [initial state], **When** [action], **Then** [expected outcome]
---
[Add more user stories as needed, each with an assigned priority]
### Edge Cases
<!--
ACTION REQUIRED: The content in this section represents placeholders.
Fill them out with the right edge cases.
-->
- What happens when [boundary condition]?
- How does system handle [error scenario]?
## Requirements *(mandatory)*
<!--
ACTION REQUIRED: The content in this section represents placeholders.
Fill them out with the right functional requirements.
-->
### Functional Requirements
- **FR-001**: System MUST [specific capability, e.g., "allow users to create accounts"]
- **FR-002**: System MUST [specific capability, e.g., "validate email addresses"]
- **FR-003**: Users MUST be able to [key interaction, e.g., "reset their password"]
- **FR-004**: System MUST [data requirement, e.g., "persist user preferences"]
- **FR-005**: System MUST [behavior, e.g., "log all security events"]
*Example of marking unclear requirements:*
- **FR-006**: System MUST authenticate users via [NEEDS CLARIFICATION: auth method not specified - email/password, SSO, OAuth?]
- **FR-007**: System MUST retain user data for [NEEDS CLARIFICATION: retention period not specified]
### Key Entities *(include if feature involves data)*
- **[Entity 1]**: [What it represents, key attributes without implementation]
- **[Entity 2]**: [What it represents, relationships to other entities]
## Success Criteria *(mandatory)*
<!--
ACTION REQUIRED: Define measurable success criteria.
These must be technology-agnostic and measurable.
-->
### Measurable Outcomes
- **SC-001**: [Measurable metric, e.g., "Users can complete account creation in under 2 minutes"]
- **SC-002**: [Measurable metric, e.g., "System handles 1000 concurrent users without degradation"]
- **SC-003**: [User satisfaction metric, e.g., "90% of users successfully complete primary task on first attempt"]
- **SC-004**: [Business metric, e.g., "Reduce support tickets related to [X] by 50%"]

View File

@@ -0,0 +1,250 @@
---
description: "Task list template for feature implementation"
---
# Tasks: [FEATURE NAME]
**Input**: Design documents from `/specs/[###-feature-name]/`
**Prerequisites**: plan.md (required), spec.md (required for user stories), research.md, data-model.md, contracts/
**Tests**: The examples below include test tasks. Tests are OPTIONAL - only include them if explicitly requested in the feature specification.
**Organization**: Tasks are grouped by user story to enable independent implementation and testing of each story.
## Format: `[ID] [P?] [Story] Description`
- **[P]**: Can run in parallel (different files, no dependencies)
- **[Story]**: Which user story this task belongs to (e.g., US1, US2, US3)
- Include exact file paths in descriptions
## Path Conventions
- **Single project**: `src/`, `tests/` at repository root
- **Web app**: `backend/src/`, `frontend/src/`
- **Mobile**: `api/src/`, `ios/src/` or `android/src/`
- Paths shown below assume single project - adjust based on plan.md structure
<!--
============================================================================
IMPORTANT: The tasks below are SAMPLE TASKS for illustration purposes only.
The /speckit.tasks command MUST replace these with actual tasks based on:
- User stories from spec.md (with their priorities P1, P2, P3...)
- Feature requirements from plan.md
- Entities from data-model.md
- Endpoints from contracts/
Tasks MUST be organized by user story so each story can be:
- Implemented independently
- Tested independently
- Delivered as an MVP increment
DO NOT keep these sample tasks in the generated tasks.md file.
============================================================================
-->
## Phase 1: Setup (Shared Infrastructure)
**Purpose**: Project initialization and basic structure
- [ ] T001 Create project structure per implementation plan
- [ ] T002 Initialize [language] project with [framework] dependencies
- [ ] T003 [P] Configure linting and formatting tools
---
## Phase 2: Foundational (Blocking Prerequisites)
**Purpose**: Core infrastructure that MUST be complete before ANY user story can be implemented
**⚠️ CRITICAL**: No user story work can begin until this phase is complete
Examples of foundational tasks (adjust based on your project):
- [ ] T004 Setup database schema and migrations framework
- [ ] T005 [P] Implement authentication/authorization framework
- [ ] T006 [P] Setup API routing and middleware structure
- [ ] T007 Create base models/entities that all stories depend on
- [ ] T008 Configure error handling and logging infrastructure
- [ ] T009 Setup environment configuration management
**Checkpoint**: Foundation ready - user story implementation can now begin in parallel
---
## Phase 3: User Story 1 - [Title] (Priority: P1) 🎯 MVP
**Goal**: [Brief description of what this story delivers]
**Independent Test**: [How to verify this story works on its own]
### Tests for User Story 1 (OPTIONAL - only if tests requested) ⚠️
**NOTE: Write these tests FIRST, ensure they FAIL before implementation**
- [ ] T010 [P] [US1] Contract test for [endpoint] in tests/contract/test_[name].py
- [ ] T011 [P] [US1] Integration test for [user journey] in tests/integration/test_[name].py
### Implementation for User Story 1
- [ ] T012 [P] [US1] Create [Entity1] model in src/models/[entity1].py
- [ ] T013 [P] [US1] Create [Entity2] model in src/models/[entity2].py
- [ ] T014 [US1] Implement [Service] in src/services/[service].py (depends on T012, T013)
- [ ] T015 [US1] Implement [endpoint/feature] in src/[location]/[file].py
- [ ] T016 [US1] Add validation and error handling
- [ ] T017 [US1] Add logging for user story 1 operations
**Checkpoint**: At this point, User Story 1 should be fully functional and testable independently
---
## Phase 4: User Story 2 - [Title] (Priority: P2)
**Goal**: [Brief description of what this story delivers]
**Independent Test**: [How to verify this story works on its own]
### Tests for User Story 2 (OPTIONAL - only if tests requested) ⚠️
- [ ] T018 [P] [US2] Contract test for [endpoint] in tests/contract/test_[name].py
- [ ] T019 [P] [US2] Integration test for [user journey] in tests/integration/test_[name].py
### Implementation for User Story 2
- [ ] T020 [P] [US2] Create [Entity] model in src/models/[entity].py
- [ ] T021 [US2] Implement [Service] in src/services/[service].py
- [ ] T022 [US2] Implement [endpoint/feature] in src/[location]/[file].py
- [ ] T023 [US2] Integrate with User Story 1 components (if needed)
**Checkpoint**: At this point, User Stories 1 AND 2 should both work independently
---
## Phase 5: User Story 3 - [Title] (Priority: P3)
**Goal**: [Brief description of what this story delivers]
**Independent Test**: [How to verify this story works on its own]
### Tests for User Story 3 (OPTIONAL - only if tests requested) ⚠️
- [ ] T024 [P] [US3] Contract test for [endpoint] in tests/contract/test_[name].py
- [ ] T025 [P] [US3] Integration test for [user journey] in tests/integration/test_[name].py
### Implementation for User Story 3
- [ ] T026 [P] [US3] Create [Entity] model in src/models/[entity].py
- [ ] T027 [US3] Implement [Service] in src/services/[service].py
- [ ] T028 [US3] Implement [endpoint/feature] in src/[location]/[file].py
**Checkpoint**: All user stories should now be independently functional
---
[Add more user story phases as needed, following the same pattern]
---
## Phase N: Polish & Cross-Cutting Concerns
**Purpose**: Improvements that affect multiple user stories
- [ ] TXXX [P] Documentation updates in docs/
- [ ] TXXX Code cleanup and refactoring
- [ ] TXXX Performance optimization across all stories
- [ ] TXXX [P] Additional unit tests (if requested) in tests/unit/
- [ ] TXXX Security hardening
- [ ] TXXX Run quickstart.md validation
---
## Dependencies & Execution Order
### Phase Dependencies
- **Setup (Phase 1)**: No dependencies - can start immediately
- **Foundational (Phase 2)**: Depends on Setup completion - BLOCKS all user stories
- **User Stories (Phase 3+)**: All depend on Foundational phase completion
- User stories can then proceed in parallel (if staffed)
- Or sequentially in priority order (P1 → P2 → P3)
- **Polish (Final Phase)**: Depends on all desired user stories being complete
### User Story Dependencies
- **User Story 1 (P1)**: Can start after Foundational (Phase 2) - No dependencies on other stories
- **User Story 2 (P2)**: Can start after Foundational (Phase 2) - May integrate with US1 but should be independently testable
- **User Story 3 (P3)**: Can start after Foundational (Phase 2) - May integrate with US1/US2 but should be independently testable
### Within Each User Story
- Tests (if included) MUST be written and FAIL before implementation
- Models before services
- Services before endpoints
- Core implementation before integration
- Story complete before moving to next priority
### Parallel Opportunities
- All Setup tasks marked [P] can run in parallel
- All Foundational tasks marked [P] can run in parallel (within Phase 2)
- Once Foundational phase completes, all user stories can start in parallel (if team capacity allows)
- All tests for a user story marked [P] can run in parallel
- Models within a story marked [P] can run in parallel
- Different user stories can be worked on in parallel by different team members
---
## Parallel Example: User Story 1
```bash
# Launch all tests for User Story 1 together (if tests requested):
Task: "Contract test for [endpoint] in tests/contract/test_[name].py"
Task: "Integration test for [user journey] in tests/integration/test_[name].py"
# Launch all models for User Story 1 together:
Task: "Create [Entity1] model in src/models/[entity1].py"
Task: "Create [Entity2] model in src/models/[entity2].py"
```
---
## Implementation Strategy
### MVP First (User Story 1 Only)
1. Complete Phase 1: Setup
2. Complete Phase 2: Foundational (CRITICAL - blocks all stories)
3. Complete Phase 3: User Story 1
4. **STOP and VALIDATE**: Test User Story 1 independently
5. Deploy/demo if ready
### Incremental Delivery
1. Complete Setup + Foundational → Foundation ready
2. Add User Story 1 → Test independently → Deploy/Demo (MVP!)
3. Add User Story 2 → Test independently → Deploy/Demo
4. Add User Story 3 → Test independently → Deploy/Demo
5. Each story adds value without breaking previous stories
### Parallel Team Strategy
With multiple developers:
1. Team completes Setup + Foundational together
2. Once Foundational is done:
- Developer A: User Story 1
- Developer B: User Story 2
- Developer C: User Story 3
3. Stories complete and integrate independently
---
## Notes
- [P] tasks = different files, no dependencies
- [Story] label maps task to specific user story for traceability
- Each user story should be independently completable and testable
- Verify tests fail before implementing
- Commit after each task or logical group
- Stop at any checkpoint to validate story independently
- Avoid: vague tasks, same file conflicts, cross-story dependencies that break independence